Field Extensions- HW Problems

In problems 1-3 show that $a \in \mathbb{C}$ is algebraic over \mathbb{Q} .

- 1. $a = 1 \sqrt{2}$
- 2. a = 1 i
- 3. $a = \sqrt{1 + \sqrt[3]{3}}$

In problems 4 and 5 find an irreducible polynomial over \mathbb{Q} where a is a root of that polynomial.

- 4. $a = \sqrt{3 \sqrt{6}}$ 5. $a = \sqrt{2} - i$.
- 6a. Show that $x^2 2$ is irreducible in $\mathbb{Z}_3[x]$.

b. Let *a* be a zero of $x^2 - 2$ in an extension field of \mathbb{Z}_3 . Find the multiplication table for the (9) elements of $\mathbb{Z}_3(a)$, 0, 1, 2, *a*, 2*a*,

1 + a, 1 + 2a, 2 + a, 2 + 2a.

In problems 7-13 determine if the statements are true or false.

- 7. π is transcendental over \mathbb{R} .
- 8. *e* is transcendental over \mathbb{Q} .
- 9. \mathbb{C} is a simple field extension of \mathbb{R} .

10. Every field F contains an element $a \in F$ such that a is not algebraic over F.

11. \mathbb{R} is an extension field of \mathbb{Z}_5 .

12. Every nonconstant polynomial over a field F has a root in some field extension of F.

13. $\sqrt{\pi}$ is algebraic over \mathbb{R} .