Homomorphisms and Factor/Quotient Rings

Just as we discussed group homomorphisms and factor/quotient groups, there are analogous notions for rings.

Recall that:

Def. A map ϕ of a ring R into a ring R' is a **(ring) homomorphism** if:

$$\phi(a+b)=\phi(a)+\phi(b)$$
 and
$$\phi(ab)=\phi(a)\phi(b) \text{ for all } a,b\in R.$$

We saw earlier that $\phi \colon \mathbb{Z} \to \mathbb{Z}_n$ by $\phi(m) = m \pmod{n}$ is a ring homomorphism.

Ex. **Projection homomorphism**: Let $R_1, R_2, ..., R_n$ be rings for each i, the map:

$$\pi_i: R_1 \times R_2 \times \dots \times R_n \to R_i$$

$$\pi_i(r_1, r_2, \dots, r_n) = r_i$$

is a homomorphism. This homomorphism projects an element in $R_1 \times R_2 \times ... \times R_n$ on to its i^{th} component.

 π_i is a homomorphism because addition and multiplication in $R_1 \times R_2 \times ... \times R_n$ are defined componentwise. For example:

$$\pi_i((r_1,r_2,\ldots,r_n)+(s_1,s_2,\ldots,s_n))=\pi_i(r_1+s_1,r_2+s_2,\ldots,r_n+s_n)$$

$$=r_i+s_i$$

$$=\pi_i(r_1,r_2,\ldots,r_n)+\pi_i(s_1,s_2,\ldots,s_n),$$
 for any (r_1,\ldots,r_n) , $(s_1,\ldots,s_n)\in R_1\times\ldots\times R_n.$

Theorem: Let ϕ be a homomorphism of a ring R into a ring R'.

- 1. If 0 is the additive identity in R, then $\phi(0)=0'$ is the additive identity in R'.
- 2. If $a \in R$, then $\phi(-a) = -\phi(a)$.
- 3. If S is a subring of R, then $\phi[S]$ is a subring of R'.
- 4. If S' is a subring of R' then $\phi^{-1}[S']$ is a subring of R.
- 5. If R has unity 1, then $\phi(1)$ is unity for $\phi[R]$.

Proof: 1. and 2. follow from the theorem on pages 5-6 of the section called Group Homomorphisms (which I'll refer to as the Group Homomorphism theorem), since ϕ is a group homomorphism on (R, +).

For 3. and 4., by the Group Homomorphism theorem, $\phi[S, +]$ is a subgroup of R' and $\phi^{-1}[S', +']$ is a subgroup of R. Thus we only need to show that $\phi[S]$ and $\phi^{-1}[S']$ are closed under multiplication.

- 3. If $\phi(x_1), \phi(x_2) \in \phi[S]$ then $\phi(x_1)\phi(x_2) = \phi(x_1x_2) \in \phi[S]$
- 4. If $x_1, x_2 \in \phi^{-1}[S']$ then $\phi(x_1x_2) = \phi(x_1)\phi(x_2) \in S'$ so $x_1x_2 \in \phi^{-1}[S']$.

For 5. Notice that:

$$\phi(x) = \phi(1x) = \phi(1)\phi(x)$$
$$\phi(x) = \phi(x1) = \phi(x)\phi(1)$$

So $\phi(1)$ is unity for $\phi[R]$.

Def. Let $\phi: R \to R'$ be a ring homomorphism. The subring

$$\phi^{-1}[0'] = \{r \in R \mid \phi(r) = 0'\}$$
 is the **kernel of** ϕ , denoted $\ker(\phi)$.

This $\ker \phi$ is the same as the kernel of the group homomorphism of (R, +) into (R', +') given by ϕ .

Ex. Let $\phi: \mathbb{Z} \to \mathbb{Z}_{12}$ by $\phi(m) = m \pmod{12}$. Find $\ker(\phi)$.

$$\ker(\phi) = \{ m \in \mathbb{Z} \mid m \pmod{12} = 0 \}$$
$$= \{ \dots -24, -12, 0, 12, 24, \dots \} = 12\mathbb{Z}$$

Ex. Consider the ring $F = \{constant \ functions \ from \ \mathbb{R} \to \mathbb{R}\}$ and the evaluation homomorphism $\phi_2 \colon F \to \mathbb{R}$ by $\phi_2(f) = f(2)$. Find $\ker(\phi)$.

$$\phi_2(f)=0 \Longrightarrow f(2)=0.$$
 But f is a constant function so $\ker(\phi)=\{f(x)=0\}.$

Ex. Consider the subring $S' = \{0,4,8\} \subseteq \mathbb{Z}_{12}$. Using the homomorphism $\phi(m) = m \pmod{12}$, of \mathbb{Z} onto \mathbb{Z}_{12} , find $\phi^{-1}[S']$.

$$\phi^{-1}(0)=12\mathbb{Z},$$

$$\phi^{-1}(4) = \{... - 20, -8, 4, 16, 28, ...\} = 4 + 12\mathbb{Z}$$

$$\phi^{-1}(8) = \{... - 16, -4, 8, 20, 32, ...\} = 8 + 12\mathbb{Z}$$

$$\Rightarrow \phi^{-1}\{0,4,8\} = \{\dots, -12, -8, -4, 0, 4, 8, 12 \dots\} = 4\mathbb{Z}.$$

If R has unity 1, then $\phi(1)$ is unity for $\phi[R]$, but not necessarily for R'.

Ex. Let $\phi \colon \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ by $\phi(x) = (x,0)$. ϕ is a homomorphism and $\phi(1) = (1,0)$ which is unity for $\phi[\mathbb{Z}] = \mathbb{Z} \times \{0\}$, but (1,1) is unity for $\mathbb{Z} \times \mathbb{Z}$.

Analogous to our theorem for kernels of group homomorphism we have:

Theorem: Let $\phi \colon R \to R'$ be a ring homomorphism and let $H = \ker(\phi)$. Let $a \in R$. Then $\phi^{-1}[\phi(a)] = a + H = H + a$, where a + H = H + a is the coset containing a of the commutative additive group H, +.

Ex. Let $\phi\colon\mathbb{Z}\to\mathbb{Z}_{12}$ by $\phi(m)=m\ (mod\ 12).$ Find $\phi^{-1}[\phi(28)]$ and $\phi^{-1}[\phi(17)].$

$$\phi^{-1}[\phi(28)] = \phi^{-1}(28 \pmod{12}) = \phi^{-1}(4) = 4 + 12\mathbb{Z}.$$

$$\phi^{-1}[\phi(17)] = \phi^{-1}(17 \pmod{12}) = \phi^{-1}(5) = 5 + 12\mathbb{Z}.$$

Corollary: A ring homomorphism $\phi\colon R\to R'$ is a 1-1 map, if, and only if, $\ker\phi=\{0\}.$

We can now develop the analogue to factor/quotient groups, i.e. factor/quotient rings.

Theorem: Let $\phi \colon R \to R'$ be a ring homomorphism with kernel H. Then the additive cosets of H form a ring R/H whose binary operations are given by : The sum of the two cosets is defined by:

$$(a + H) + (b + H) = (a + b) + H.$$

and the product of the cosets is defined by:

$$(a+H)(b+H) = (ab) + H.$$

Also, the map $\tau \colon R/H \to \phi[R]$ defined by:

$$\tau(a+H) = \phi[a]$$

is an isomorphism.

Ex. Let $\phi \colon \mathbb{Z} \to \mathbb{Z}_n$ by $\phi(m) = m \pmod{n}$, $H = \ker(\phi) = n\mathbb{Z}$.

By the previous theorem, $\mathbb{Z}/n\mathbb{Z}$ is isomorphic to \mathbb{Z}_n as a ring by:

$$\tau(a + \{..., -3n, -2n, -n, 0, n, 2n, 3n, ...\}) = a$$

where $0 \le a \le n - 1$.

Ex. Show that $\mathbb{Z}_8/\{0,4\}$ is isomorphic to \mathbb{Z}_4 .

Consider the homomorphism:

$$\phi: \mathbb{Z}_8 \to \mathbb{Z}_4$$
 by $\phi(m) = m \pmod{4}$ where $H = \ker(\phi) = \{0,4\}$.

By the previous theorem $\mathbb{Z}_8/H\cong\mathbb{Z}_4$; which says $\mathbb{Z}_8/\{0,4\}$ is isomorphic to \mathbb{Z}_4 .

Theorem: Let H be a subring of the ring R. Multiplication of additive cosets of H is well defined by:

$$(a+H)(b+H) = ab + H$$

if, and only if, $ah \in H$ and $hb \in H$ for all $a, b \in R$ and $h \in H$.

For groups in order for G/H to form a group we need H to be a normal subgroup of G. The analogue for rings follows.

Def. An additive subgroup N of a ring R satisfying the properties:

 $aN \subseteq N$ and $Nb \subseteq N$ for all $a, b \in R$ is an **ideal**.

Ex. $n\mathbb{Z}$ is an ideal in \mathbb{Z} since $n\mathbb{Z}$ is a subgroup and because,

$$t(nm) = (nm)t = n(mt) \in n\mathbb{Z}$$
 for all $t \in \mathbb{Z}$.

Ex. Let F be the ring of all functions $f: \mathbb{R} \to \mathbb{R}$. Let C be the subring of F of all constant functions. Is C an ideal of F?

No! In order for \mathcal{C} to be an ideal of \mathcal{F} we would need:

$$f \cdot c \in C$$
, $c \cdot f \in C$ for all $f \in F$ and $c \in C$.

But, in general $f \cdot c$ is not a constant function so C is not an ideal in F. So not all subrings are ideals.

Ex. Let F be the ring of functions $f: \mathbb{R} \to \mathbb{R}$. Let N be the subgroup of functions f such that f(6) = 0. Is N an ideal?

Yes! Notice that if $g(x) \in F$ and $f(x) \in N$, then if:

$$h(x) = g(x)f(x)$$
 then $h(6) = g(6)f(6) = g(6)(0) = 0$.

And if
$$j(x) = f(x)g(x)$$
 then $j(6) = f(6)g(6) = 0(g(6)) = 0$.

so N is an ideal.

Ex. Show that $\{0,4\}$ is an ideal in \mathbb{Z}_8 .

$$a(0) = (0)a = 0$$
, for all $a \in \mathbb{Z}_8$.

$$a(4) = (4)a \equiv 0 \text{ or } 4 \text{ for all } a \in \mathbb{Z}_8.$$

So $\{0,4\}$ is an ideal in \mathbb{Z}_8 .

Ex. Show that $S[x] \subseteq \mathbb{Z}[x]$, where $f \in S[x]$ if

$$f(x) = a_n x^n + \dots + a_1 x$$
; i.e. $a_0 = 0$ is an ideal in $\mathbb{Z}[x]$.

If $g(x) \in \mathbb{Z}[x]$, then g(x)f(x) = f(x)g(x) and the constant term is 0. So S[x] is an ideal in $\mathbb{Z}[x]$. Ex. Show that $S[x] \subseteq \mathbb{Z}[x]$, where $f \in S[x]$ if

$$f(x) = a_n x^n + \dots + a_1 x + a_0$$
; $a_i \in 2\mathbb{Z}$ is an ideal in $\mathbb{Z}[x]$.

If $g(x) \in \mathbb{Z}[x]$, then g(x)f(x) = f(x)g(x) and the coefficients of the product will be even because an even integer times any integer is even.

So S[x] is an ideal in $\mathbb{Z}[x]$.

Ex. Show that the subring $S\subseteq M_2(\mathbb{R})=2 imes 2$ matrices over \mathbb{R} , given by

$$S = \left\{ \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} \middle| a \in \mathbb{R} \right\}$$
 is not an ideal.

To see that S is a subring:

$$\begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} b & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} a+b & 0 \\ 0 & 0 \end{pmatrix}; \qquad \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} b & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} ab & 0 \\ 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix}. \quad \text{However,}$$

$$\begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x & y \\ w & z \end{pmatrix} = \begin{pmatrix} ax & ay \\ 0 & 0 \end{pmatrix} \notin S.$$

Corollary: Let N be an ideal of a ring R. Then the additive cosets on N form a ring R/N with the binary operations defined by:

$$(a + N) + (b + N) = (a + b) + N$$
 and $(a + N)(b + N) = ab + N$.

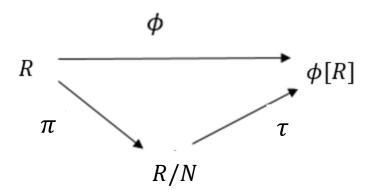
Def. The ring R/N is the factor ring (or quotient ring) of R by N.

Theorem: Let N be an ideal of a ring R.

Then $\gamma:R\to R/N$ by $\gamma(x)=x+N$ is a ring homomorphism with kernel equal to N.

Fundamental Homomorphism Theorem:

Let $\phi\colon R\to R'$ be a ring homomorphism with kernel N. Then $\phi[R]$ is a ring, and the map $\tau\colon R/N\to \phi[R]$ given by $\tau(x+N)=\phi(x)$ is an isomorphism. If $\pi\colon R\to R/N$ is the homomorphism given by $\pi(x)=x+N$ then for each $x\in R$, we have $\phi(x)=\tau\pi(x)$.



Ex. Find all of the ideals N of \mathbb{Z}_{12} . In each case compute \mathbb{Z}_{12}/N , that is, find a known ring that is isomorphic to it.

The ideals are subrings of \mathbb{Z}_{12} , N such that $aN\subseteq N$ and $Na\subseteq N$ for all $a\in\mathbb{Z}_{12}$.

The subgroups of \mathbb{Z}_{12} are:

$$\mathbb{Z}_{12} = \{0, 1, 2, ..., 11\}$$
 $4\mathbb{Z}_{12} = \{0, 4, 8\}$
 $2\mathbb{Z}_{12} = \{0, 2, 4, 6, 8, 10\}$ $6\mathbb{Z}_{12} = \{0, 6\}$
 $3\mathbb{Z}_{12} = \{0, 3, 6, 9\}$ $12\mathbb{Z}_{12} = \{0\}$

Notice that $n\mathbb{Z}_{12}$, where n is relatively prime to 12, just gives \mathbb{Z}_{12} . Each of these subrings is an ideal.

For example, if we take $3\mathbb{Z}_{12}$ notice if we multiply an element by $c \in \mathbb{Z}_{12}$:

$$(3a)(c) \pmod{12} = 3(ac) \pmod{12}.$$

So $3ac \in 3\mathbb{Z}_{12}$. Multiplication is commutative in \mathbb{Z}_{12} so multiplication on the right also works.

Notice: $\mathbb{Z}_{12}/3\mathbb{Z}_{12}=$ the set of cosets of the form $a+\{0,3,6,9\}$ where a=0,1, or 2. Thus $\mathbb{Z}_{12}/3\mathbb{Z}_{12}\cong\mathbb{Z}_3.$ Similarly:

$$\mathbb{Z}_{12}/2\mathbb{Z}_{12} \cong \mathbb{Z}_{2}$$

$$\mathbb{Z}_{12}/4\mathbb{Z}_{12} \cong \mathbb{Z}_{4}$$

$$\mathbb{Z}_{12}/6\mathbb{Z}_{12} \cong \mathbb{Z}_{6}$$

$$\mathbb{Z}_{12}/12\mathbb{Z}_{12} \cong \mathbb{Z}_{12}$$

$$\mathbb{Z}_{12}/\mathbb{Z}_{12} \cong \{0\}.$$