
1 
 

 Factoring Polynomials over a Field  

 

Our goal is to find zeros of a polynomial. Suppose we can factor a 

polynomial over a field 𝐹, i.e. 𝑓(𝑥) = 𝑔(𝑥)ℎ(𝑥). Recall that if 𝜙𝛼  is the 

evaluation homomorphism: 

𝑓(𝛼) = 𝜙𝛼(𝑥) = 𝜙𝛼(𝑔(𝑥)ℎ(𝑥)) = 𝜙𝛼(𝑔(𝑥))𝜙𝛼(ℎ(𝑥)) = 𝑔(𝛼)ℎ(𝛼).  

 

Since 𝐹 is a field it has no 0 divisors,  if 0 = 𝑓(𝛼) = 𝑔(𝛼)ℎ(𝛼) then either 

𝑔(𝛼) = 0 or ℎ(𝛼) = 0.  

So if we can factor a polynomial 𝑓(𝑥) = 𝑔(𝑥)ℎ(𝑥), then finding zeros of 𝑓(𝑥) is 

reduced to finding zeros of 𝑔(𝑥) and ℎ(𝑥). 

 

 

Theorem: Division Algorithm for 𝐹[𝑥] 

  

Let 𝑓(𝑥) = 𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + ⋯ + 𝑎0 

               𝑔(𝑥) = 𝑏𝑚𝑥𝑚 + 𝑏𝑚−1𝑥𝑚−1 + ⋯ + 𝑏0 be elements of 𝐹[𝑥], 

 with 𝑎𝑛 and 𝑏𝑚 both non-zero, and 𝑚 > 0. Then there are unique 

 polynomials 𝑞(𝑥) and 𝑟(𝑥) in 𝐹[𝑥] such that: 

 

𝑓(𝑥) = 𝑞(𝑥)𝑔(𝑥) + 𝑟(𝑥) 

 

 where either 𝑟(𝑥) = 0 or the degree of 𝑟(𝑥) is less than the degree 𝑚 of 

          𝑔(𝑥).  
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Ex.    Let 𝑓(𝑥) = 𝑥4 + 𝑥3 − 3𝑥2 + 2𝑥 + 3 and 𝑔(𝑥) = 𝑥2 − 2𝑥 + 2 

 in ℤ5[𝑥]. Find 𝑞(𝑥) and 𝑟(𝑥) such that 𝑓(𝑥) = 𝑔(𝑥)𝑞(𝑥) + 𝑟(𝑥) 

 and 𝑟(𝑥) is of degree less than 𝑔(𝑥) (i.e. less than 2). 

 

                             𝑥2 + 3𝑥 + 1 

𝑥2 − 2𝑥 + 2    𝑥4 + 𝑥3 − 3𝑥2 + 2𝑥 + 3 

                         𝑥4 − 2𝑥3 + 2𝑥2 

                                  3𝑥3              + 2𝑥      (−3 − 2 ≡ 0 𝑚𝑜𝑑 5) 

                                  3𝑥3 −   𝑥2 +    𝑥                          (3(2) ≡ 1 𝑚𝑜𝑑 5) 

        𝑥2 +    𝑥 + 3              

                                                  𝑥2 − 2𝑥 + 2 

                                                            3𝑥 + 1  

 

 So 𝑞(𝑥) = 𝑥2 + 3𝑥 = 1 and 𝑟(𝑥) = 3𝑥 + 1. 

 

Corollary: (Factor Theorem)  An element 𝛼 ∈ 𝐹 is a zero of 𝑓(𝑥) ∈ 𝐹[𝑥]   

         if, and only if, 𝑥 − 𝛼 is a factor of 𝑓(𝑥) in 𝐹[𝑥].  

 

 Proof:  Assume that 𝑓(𝛼) = 0,  for 𝛼 ∈ 𝐹. 

             By the previous theorem we can write: 

                         𝑓(𝑥) = (𝑥 − 𝛼)𝑞(𝑥) + 𝑟(𝑥),  where the degree of 𝑟(𝑥) is 0. 

              Thus 𝑟(𝑥) =constant.  But 𝑓(𝛼) = 0 implies that: 

                          0 = 𝑓(𝛼) = (𝛼 − 𝛼)𝑞(𝛼) + 𝐶 ⟹  𝐶 = 0.  

                           Hence  𝑓(𝑥) = (𝑥 − 𝛼)𝑞(𝑥)  and  𝑥 − 𝛼 is a factor of 𝑓(𝑥). 
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Now assume that 𝑥 − 𝛼 is a factor of 𝑓(𝑥) in 𝐹[𝑥].  Then we have: 

                         𝑓(𝑥) = (𝑥 − 𝛼)𝑞(𝑥).   

Hence:             𝑓(𝛼) = (𝛼 − 𝛼)𝑞(𝛼) = 0. 

So   𝛼 is a zero of 𝑓(𝑥) ∈ 𝐹[𝑥]. 

 

Ex.    Factor 𝑥4 + 3𝑥3 + 𝑥2 + 2𝑥 + 3 ∈ ℤ5[𝑥] by finding a root 𝛼 and then 

         dividing 𝑓(𝑥) by 𝑥 − 𝛼.  

 

 Since there are only 5 elements in ℤ5 we can just test elements until we 

            find a root: 

 𝛼 = 0,      𝑓(0) = 3 ≢ 0  𝑚𝑜𝑑 5 

 𝛼 = 1,      𝑓(1) = 14 + 3(1)3 + +(1)2 + 2(1) + 3 ≡ 0 𝑚𝑜𝑑 5. 

 So 𝛼 = 1 is a root of 𝑥4 + 3𝑥3 + 𝑥2 + 2𝑥 + 3.  

 

               𝑥3 + 4𝑥2 +          2 

𝑥 − 1⃒𝑥4 + 3𝑥3 + 𝑥2 + 2𝑥 + 3  

    𝑥4 − 𝑥3 

  4𝑥3 + 𝑥2 

  4𝑥3 − 4𝑥2 

             +2𝑥 + 3                    (1 + 4 ≡ 0 𝑚𝑜𝑑 5) 

                                           2𝑥 − 2 

                  0                    (3 + 2 ≡ 0 𝑚𝑜𝑑 5) 
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So 𝑥4 + 3𝑥3 + +𝑥2 + 2𝑥 + 3 = (𝑥 − 1)(𝑥3 + 4𝑥2 + 2) in ℤ5[𝑥] 

 

Now find a root of 𝑔(𝑥) = 𝑥3 + 4𝑥2 + 2 by testing elements of ℤ5. 

 𝑔(0) = 2 ≠ 0  

 𝑔(1) = 13 + 4(1)2 + 2 = 7 ≡ 2 (𝑚𝑜𝑑 5)  

 𝑔(2) = 23 + 4(2)2 + 2 = 26 ≡ 1 (𝑚𝑜𝑑 5) 

 𝑔(3) = 33 + 4(3)2 + 2 = 65 ≡ 0 (𝑚𝑜𝑑 5).  So 3 is a root. 

 

 

      𝑥2 + 2𝑥 + 1 

𝑥 − 1⃒𝑥3 + 4𝑥2 +         2 

                       𝑥3 − 3𝑥2   

        2𝑥2 

                                   2𝑥2 − 𝑥 

                                                𝑥 + 2       

                                                 𝑥 − 3 

                                                         0 

 

 

 So 𝑥4 + 3𝑥3 + 𝑥2 + 2𝑥 + 3 = (𝑥 − 1)(𝑥 − 3)(𝑥2 + 2𝑥 + 1) ∈  ℤ5[𝑥].   

 

But 𝑥2 + 2𝑥 + 1 = (𝑥 + 1)2 so we get:  

 

𝑥4 + 3𝑥3 + 𝑥2 + 2𝑥 + 3 = (𝑥 − 1)(𝑥 − 3)(𝑥 + 1)2 ∈  ℤ5[𝑥].   

3 
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Corollary:   A non-zero polynomial 𝑓(𝑥) ∈ 𝐹[𝑥] of degree 𝑛 can have at   

          most 𝑛 zeros in a field. 

 

This follows from the previous Corollary.  If 𝛼1 is a zero of 𝑓(𝑥) then: 

                  𝑓(𝑥) = (𝑥 − 𝛼1)𝑞1(𝑥);       where degree of 𝑞1(𝑥) is 𝑛 − 1. 

We can repeat this process at most 𝑛 − 1 times before the degree of 𝑞𝑘(𝑥) is 0. 

Thus 𝑓(𝑥) can have at most 𝑛 zeros. 

 

Corollary:   If 𝐺 is a finite subgroup of the multiplicative group 𝐹∗, ∙  of a field 

          𝐹, then 𝐺 is cyclic. In particular, the multiplicative group of all  

          non-zero elements of a finite field is cyclic. 

 

 

Ex.   Find all generators of the cyclic multiplicative group of units of ℤ5.  

 

      Recall that if 𝑎 is a generator of a finite cyclic group 𝐺 of order 𝑛, then the 

       other generators of 𝐺 are elements of the form 𝑎𝑟  where 𝑟 is relatively 

       prime to 𝑛. In this case, 𝐺 is the multiplicative group 𝐺 = {1, 2, 3, 4} of 

       elements in ℤ5 thus, |𝐺| = 4. 

      Notice also that 2 is a generator of 𝐺 since:  

21 = 2,       22 = 4,      23 ≡ 3 (𝑚𝑜𝑑 5),       24 ≡ 1 (𝑚𝑜𝑑 5). 

     So the other generators of 𝐺 will be 2𝑟 where 𝑟 is relatively prime to 4 so 

     23 ≡ 3 (𝑚𝑜𝑑 5) is the only other generator of 𝐺. So {2, 3} are the   

      generators of 𝐺. 
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Def.   A non-constant polynomial 𝑓(𝑥) ∈ 𝐹[𝑥] is irreducible over 𝑭 or is an 

           irreducible polynomial in 𝑭[𝒙] if 𝑓(𝑥) cannot be expressed as a product 

         𝑔(𝑥)ℎ(𝑥) of two non-constant polynomials 𝑔(𝑥) and ℎ(𝑥) in 𝐹[𝑥] both 

          lower degree than the degree of 𝑓(𝑥). If 𝑓(𝑥) ∈ 𝐹[𝑥] is not irreducible 

          over 𝐹, then 𝑓(𝑥) is reducible over 𝑭. 

 

 Notice that a polynomial can be irreducible over one field but reducible 

            over a larger field. 

 

Ex.    𝑓(𝑥) = 𝑥2 − 3 is irreducible over ℚ but reducible over ℝ, since: 

𝑥2 − 3 = (𝑥 − √3)(𝑥 + √3). 

 

 

Ex.   Let’s show 𝑓(𝑥) = 𝑥3 + 𝑥2 + 3𝑥 + 1 in ℤ5[𝑥] is irreducible over ℤ5.  

 

       Since 𝑓(𝑥) is degree 3, If 𝑓(𝑥) can be factored in ℤ5[𝑥], then at least 

        one factor is linear. Thus 𝑓(𝑥) must have a zero in ℤ5. However, in ℤ5:  

              𝑓(0) = 1               

       𝑓(1) = 6 ≡ 1 (𝑚𝑜𝑑 5) 

       𝑓(2) = 23 + +22 + 3(2) + 1 = 19 ≡ 4 (𝑚𝑜𝑑 5) 

               𝑓(3) = 33 + 32 + 3(3) + 1 = 46 ≡ 1 (𝑚𝑜𝑑 5) 

        𝑓(4) = 43 + 42 + 3(4) + 1 = 93 ≡ 3 (𝑚𝑜𝑑 5). 

              Thus 𝑓(𝑥) doesn’t have a zero in ℤ5, and so 𝑓(𝑥) is irreducible over ℤ5. 
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Theorem:   Let 𝑓(𝑥) ∈ 𝐹[𝑥] and let 𝑓(𝑥) be degree 2 or 3. Then 𝑓(𝑥) is  

          reducible over 𝐹 if, and only if, it has a zero in 𝐹. 

 

Proof:  If 𝑓(𝑥) is reducible then: 

                 𝑓(𝑥) = 𝑝(𝑥)𝑞(𝑥);    where the degrees of 𝑝(𝑥), 𝑞(𝑥) are each at 

least 1 and their sum is the degree of 𝑓(𝑥) (either 2 or 3). 

Thus the degree of 𝑝(𝑥) or 𝑞(𝑥) is 1.   

Hence 𝑓(𝑥) has a zero in 𝐹.  

 

If 𝑓(𝑥) has a zero,  𝛼, in 𝐹, then we can write: 

                 𝑓(𝑥) = (𝑥 − 𝛼)𝑞(𝑥);   where the degree of 𝑞(𝑥) is at least 1. 

Hence 𝑓(𝑥) is reducible over 𝐹. 

                     

Notice that if 𝑓(𝑥) is degree 4 then it's possible that 𝑓(𝑥) is reducible without 

having a root in 𝐹.  For example: 

                  𝑓(𝑥) = 𝑥4 − 9 = (𝑥2 − 3)(𝑥2 + 3)     

factors over 𝐹 = ℚ, but doesn't have a zero in ℚ. 

 

Theorem:   If 𝑓(𝑥) ∈ ℤ[𝑥], then 𝑓(𝑥) factors into a product of two   

           polynomials of lower degrees 𝑟 and 𝑠 in ℚ[𝑥] if, and only if,   

           it has such a factorization of the same degrees 𝑟 and 𝑠 in  ℤ[𝑥]. 
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Corollary:   If 𝑓(𝑥) = 𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + ⋯ + 𝑎0 ∈ ℤ[𝑥], with 𝑎0 ≠ 0,  

         and if 𝑓(𝑥) has a zero in ℚ; then it has a zero 𝑚 in ℤ, and 𝑚   

         must divide 𝑎0. 

 

Proof:  Since 𝑓(𝑥) ∈ ℤ[𝑥] by the previous theorem if it factors in ℚ[𝑥],      

            it factors in ℤ[𝑥].  

            Since 𝑓(𝑥) has a zero in ℚ it has a linear factor in ℚ[𝑥]. So in ℤ[𝑥] we 

              have: 

𝑓(𝑥) = (𝑥 − 𝑚) (𝑥𝑛−1 + ⋯ −
𝑎0

𝑚
)       where    

𝑎0

𝑚
∈ ℤ.   

  So 𝑚 divides 𝑎0. 

 

Ex.     Notice that 𝑥2 − 3 in ℚ[𝑥] factors over ℚ if, and only if, it factors over    

            ℤ (since the coefficients are in ℤ). But in order to factor over ℤ, it would 

            have to have a zero in ℤ (which it clearly doesn’t). Thus, 𝑥2 − 3 is 

            irreducible over ℚ. 

 

 

Theorem:  Eisenstein Criterion 

 Let 𝑝 ∈ ℤ be a prime. Suppose: 

𝑓(𝑥) = 𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + ⋯ + 𝑎0 ∈ ℤ[𝑥],  

and 𝑎𝑛 ≢ 0 (𝑚𝑜𝑑 𝑝), but 𝑎𝑖 ≡ 0 (𝑚𝑜𝑑 𝑝) for 𝑖 < 𝑛, 

with 𝑎0 ≢ 0 (𝑚𝑜𝑑 𝑝2). 

 Then 𝑓(𝑥) is irreducible over ℚ. 

 



9 
 

Ex.    Show that 𝑓(𝑥) = 11𝑥5 − 3𝑥4 − 9𝑥2 − 12 is irreducible over ℚ. 

 

           If we take 𝑝 = 3,  notice that 11 ≢ 0 (𝑚𝑜𝑑 3),  

                                    −3, −9, −12 are ≡ 0 (𝑚𝑜𝑑 3),  and 

                                                                −12 ≢ 0 (𝑚𝑜𝑑 9).   

            Thus by the Eisenstein criterion, 𝑓(𝑥) is irreducible over ℚ. 

 

 

Ex.  Show that 𝑓(𝑥) = 2𝑥6 − 7𝑥5 + 21𝑥3 − 14𝑥 + 14 is irreducible over ℚ. 

 

                If we take 𝑝 = 7, notice that        2 ≢ 0 (𝑚𝑜𝑑 7),   

                                      −7, 21, −14, 14 are ≡ 0 (𝑚𝑜𝑑 7),   and 

                                                                             14 ≢ 0 (𝑚𝑜𝑑 49).   

                  Thus by the Eisenstein criterion, 𝑓(𝑥) is irreducible over ℚ. 


