Rings of Polynomials

Let *R* be a ring and let *x* be called an indeterminant (as opposed to a variable). Def. A **polynomial** f(x) with coefficients in *R* is any expression of the form:

$$\sum_{i=0}^{\infty} a_i x^i = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + \dots$$

where $a_i \in R$ and $a_i = 0$ for all but a finite number of values of i. The a_i 's are **coefficients** of f(x). The largest i for which $a_i \neq 0$ is called the **degree of the polynomial**. If for all $i, a_i = 0$, then we say the degree of f(x) is undefined.

Let $R[x] = \{$ set of polynomials, f(x), with coefficients in $R\}$.

Notice that R[x] is also a ring where addition and multiplication is defined in the usual way:

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + \dots$$
$$g(x) = b_0 + b_1 x + b_2 x^2 + \dots + b_n x^n + \dots$$

Then, $f(x) + g(x) = c_0 + c_1 x + c_2 x^2 + \dots + c_n x^n + \dots$, where $c_i = a_i + b_i$ and $f(x)g(x) = d_0 + d_1 x + d_2 x^2 + \dots + d_n x^n + \dots$ where $d_i = \sum_{i=0}^{i} a_i b_{(i-i)}$.

Notice that if R is not commutative then neither is R[x]. If R is commutative then so is R[x].

The additive identity element for R[x] is f(x) = 0 and the multiplicative identity element is g(x) = 1.

Showing that R[x], + is an abelian group and that R[x] satisfies multiplicative associativity and the distributive laws is messy but straight forward.

Ex. Let
$$\mathbb{Z}_2[x] = R[x]$$
. Calculate $(x + 1)^2$ and $(x + 1) + (x + 1)$.

$$(x+1)^2 = (x+1)(x+1) = x^2 + (1+1)x + 1 = x^2 + 1$$
$$(x+1) + (x+1) = (1+1)x + (1+1) = 0x + 0 = 0.$$

Ex. Find the sum and product of f(x) = 4x - 5 and $g(x) = 2x^2 - 4x + 2$ in $\mathbb{Z}_8[x]$.

$$f(x) + g(x) = (4x - 5) + (2x^2 - 4x + 2)$$

= 2x² + (4 - 4)x + (2 - 5)
= 2x² - 3
= 2x² + 5 in Z₈[x].

$$f(x)g(x) = (4x - 5)(2x^{2} - 4x + 2)$$

= $(4 \cdot 2)x^{3} - (4 \cdot 4)x^{2} + (4 \cdot 2)x - (5 \cdot 2)x^{2} + (5 \cdot 4)x - (5 \cdot 2)$
= $0x^{3} - 0x^{2} + 0x - 2x^{2} + 4x - 2$
(since $10 \equiv 2 \pmod{8}$ and $20 \equiv 4 \pmod{8}$)
= $-2x^{2} + 4x - 2$
= $6x^{2} + 4x + 6$.

We define $R[x_1, x_2, ..., x_n]$ the ring of polynomials in n indeterminants with coefficients in R in the usual way.

Ex. What are the units of $\mathbb{Z}_5[x]$?

So given an element $f(x) = a_0 + a_1x + a_2x^2 + \dots + a_nx^n$ when is there a $g(x) = b_0 + b_1x + b_2x^2 + \dots + b_mx^m$ such that (f(x))(g(x)) = 1 in $\mathbb{Z}_5[x]$?

Notice that $\mathbb{Z}_5 \subseteq \mathbb{Z}_5[x]$, and \mathbb{Z}_5 is a field (but $\mathbb{Z}_5[x]$ isn't a field).

Thus, any non-zero element in \mathbb{Z}_5 has an inverse. So the polynomials f(x) = 1, f(x) = 2, f(x) = 3, and f(x) = 4 are units in $\mathbb{Z}_5[x]$.

Suppose $f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$ has an inverse $g(x) = b_0 + b_1 x + b_2 x^2 + \dots + b_m x^m$ in $\mathbb{Z}_5[x]$.

Let's assume $a_n \neq 0$ for some n > 0 i.e. f(x) is not a constant function, then $f(x)g(x) = c_0 + c_1x + c_2x^2 + \dots + c_{n+m}x^{(n+m)}$ where the highest power of f(x)g(x) is a_nb_m where a_n is the coefficient of the highest power of f(x) (with a non-zero coefficient) and b_m is the coefficient of the highest power of g(x) (with a non-zero coefficient).

Since $a_n \neq 0$, $a_n b_m x^{n+m}$, does not have n + m = 0.

But In order for f(x)g(x) = 1, all coefficients $c_1, c_2, ..., c_{n+m}$ must be 0.

But that would mean $a_n b_m = 0$ and that can't happen because \mathbb{Z}_5 is a field and has no 0 divisors. Thus, the only units of $\mathbb{Z}_5[x]$ are the constant functions f(x) = 1, f(x) = 2, f(x) = 3, and f(x) = 4.

If D is an integral domain then so is D[x]. The argument is similar to the one used in the previous example. If

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$
$$g(x) = b_0 + b_1 x + b_2 x^2 + \dots + b_m x^m$$

then the only way for f(x)g(x) = 0 (that is, the product is the 0 polynomial) is for all coefficients of the product f(x)g(x) to be 0.

The coefficient of the highest power of f(x)g(x) is a_nb_m , where $a_n \neq 0$, $b_m \neq 0$. Thus the only way for $a_nb_m = 0$ is for there to be 0 divisors in D. But D is an integral domain so that can't happen.

If F is a field (and hence an integral domain) F[x] is an integral domain but not a field since x is not a unit (i.e. there is no $f(x) \in F[x]$ with xf(x) = 1) However, we can form the field of rational functions from the integral domain F[x] (as we did earlier) by creating the field of quotients for F[x].

Theorem:

Let F be a subfield of a field E.

Let $\alpha \in E$, and let x be an indeterminant.

The map ϕ_{α} : $F[x] \rightarrow E$ is defined by:

 $\phi_{\alpha}(a_0 + a_1x + a_2x^2 + \dots + a_nx^n) = a_0 + a_1(\alpha) + a_2\alpha^2 + \dots + a_n\alpha^n$ is a homomorphism of F[x] into E.

In particular, $\phi_{\alpha}(x) = \alpha$, for all $\alpha \in F$, maps F isomorphically into E. The homomorphism ϕ_{α} is called the **evaluation homomorphism** at α . Proof: The fact that ϕ_{α} is a homomorphism comes from the definition of addition and multiplication in F[x].

If
$$f(x) = a_0 + a_1 x + \dots + a_n x^n$$
,
 $g(x) = b_0 + b_1 x + \dots + b_m x^m$
 $h(x) = f(x) + g(x) = c_0 + c_1 x + \dots + c_n x^n$, where $n \ge m$, then
 $\phi_{\alpha}(f(x) + g(x)) = \phi_{\alpha}(h(x)) = c_0 + c_1 \alpha + \dots + c_n \alpha^n$
 $\phi_{\alpha}(f(x)) + \phi_{\alpha}(g(x))$
 $= a_0 + a_1 \alpha + \dots + a_n \alpha^n + b_0 + b_1 \alpha + \dots + b_m \alpha^m$

By the definition of addition in F[x], $c_i = a_i + b_i$, so

$$\phi_{\alpha}(f(x) + g(x)) = \phi_{\alpha}(f(x)) + \phi_{\alpha}(g(x)).$$

$$f(x)g(x) = d_0 + d_1x + \dots + d_sx^s \text{ and}$$

$$\phi_\alpha(f(x)g(x)) = d_0 + d_1\alpha + \dots + d_s\alpha^s$$

$$[\phi_\alpha(f(x))][\phi_\alpha(g(x))]$$

$$= (a_0 + a_1\alpha + \dots + a_n\alpha^n)(b_0 + b_1\alpha + \dots + b_m\alpha^m)$$

By the definition of multiplication in F[x]:

$$\phi_{\alpha}(f(x)g(x)) = [\phi_{\alpha}(f(x))][\phi_{\alpha}(g(x))].$$

If f(x) = a is a constant polynomial in F[x], then $\phi_{\alpha}(a) = a$. So ϕ_{α} maps the constant functions isomorphically onto $F \subseteq E$. By the definition of ϕ_{α} , $\phi_{\alpha}(x) = \alpha$. Ex. Let $F = \mathbb{Q}$, and $E = \mathbb{R}$. Consider $\phi_3: \mathbb{Q}[x] \to \mathbb{R}$. $\phi_3(a_0 + a_1x + \dots + a_nx^n) = a_0 + a_1(3) + \dots + a_n(3)^n$. Notice that $\phi_3(x^2 - x - 6) = 3^2 - 3 - 6 = 0$. So $x^2 - x - 6$ is in the kernel of ϕ_3 . What is the kernel of ϕ_3 ?

$$\ker(\phi_3) = \{ f(x) \in \mathbb{Q}[x] | f(3) = 0 \}.$$

Ex. Let $F = \mathbb{Q}$, and $E = \mathbb{C}$ and consider:

$$\begin{split} \phi_{2i}(a_0 + a_1 x + \dots + a_n x^n) &= a_0 + a_1(2i) + \dots + a_n(2i)^n \\ \text{where } i^2 &= -1. \\ \text{Notice that } \phi_{2i}(x^2 + 4) &= (2i)^2 + 4 = 0. \\ \text{So } x^2 + 4 \text{ is in the } \ker(\phi_{2i}) &= \{f(x) \in \mathbb{Q}[x] \mid f(2i) = 0\}. \end{split}$$

Def. Let *F* be a subfield of a field *E*, and let α be an element of *E*.

Let $f(x) = a_0 + a_1 x + \dots + a_n x^n \in F[x]$, and let $\phi_{\alpha} : F[x] \to E$ be the evaluation homomorphism. Let $f(\alpha)$ denote $\phi_{\alpha} (f(x)) = a_0 + a_1 \alpha + \dots + a_n \alpha^n$. If $f(\alpha) = 0$, then α is a **zero of** f(x).

Ex. Find all of the zeros of $x^4 + 2x^2 + 2x$ in \mathbb{Z}_7 .

Since \mathbb{Z}_7 only has 7 elements we can just evaluate the polynomial for each value and see where it's 0 in \mathbb{Z}_7 .

x	$x^4 + 2x^2 + 2x = x(x^3 + 2x + 2)$
0	$0(0^3 + 2(0) + 2) \equiv 0 \pmod{7}$
1	$1(1^3 + 2(1) + 2) \equiv 5 \not\equiv 0 \pmod{7}$
2	$2(2^3 + 2(2) + 2) \equiv 2(8 + 4 + 2) \equiv 2(14) \equiv 0 \pmod{7}$
3	$3(3^3 + 2(3) + 2) \equiv 3(27 + 6 + 2) \equiv 3(35) \equiv 0 \pmod{7}$
4	$4(4^3 + 2(4) + 2) \equiv 4(64 + 8 + 2) \equiv 4(74) \not\equiv 0 \pmod{7}$
5	$5(5^3 + 2(5) + 2) \equiv 5(125 + 10 + 2) \equiv 5(137) \neq 0 \pmod{7}$
6	$6(6^3 + 2(6) + 2) \equiv 6(216 + 12 + 2) \equiv 6(230) \neq 0 \pmod{7}$

So the zeros occur at x = 0, x = 2, x = 3.