Let R be a ring and let x be called an indeterminant (as opposed to a variable). Def. A **polynomial** $f(x)$ with coefficients in R is any expression of the form:

$$
\sum_{i=0}^{\infty} a_i x^i = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + \dots
$$

where $a_i \in R$ and $a_i = 0$ for all but a finite number of values of i. The a_i 's are **coefficients** of $f(x)$. The largest i for which $a_i \neq 0$ is called the **degree of the polynomial**. If for all $i, a_i = 0$, then we say the degree of $f(x)$ is undefined.

Let $R[x] = \{$ set of polynomials, $f(x)$, with coefficients in $R\}.$

Notice that $R[x]$ is also a ring where addition and multiplication is defined in the usual way:

$$
f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + \dots
$$

$$
g(x) = b_0 + b_1 x + b_2 x^2 + \dots + b_n x^n + \dots
$$

Then, $f(x) + g(x) = c_0 + c_1 x + c_2 x^2 + \dots + c_n x^n + \dots$ where $c_i = a_i + b_i$ and $f(x)g(x) = d_0 + d_1x + d_2x^2 + \dots + d_nx^n + \dots$ where $d_i = \sum_{j=0}^i a_j b_{(i-j)}.$

Notice that if R is not commutative then neither is $R[x]$. If R is commutative then so is $R[x]$.

The additive identity element for $R[x]$ is $f(x) = 0$ and the multiplicative identity element is $g(x) = 1$.

Showing that $R[x]$, + is an abelian group and that $R[x]$ satisfies multiplicative associativity and the distributive laws is messy but straight forward.

Ex. Let
$$
\mathbb{Z}_2[x] = R[x]
$$
. Calculate $(x + 1)^2$ and $(x + 1) + (x + 1)$.

$$
(x + 1)2 = (x + 1)(x + 1) = x2 + (1 + 1)x + 1 = x2 + 1
$$

(x + 1) + (x + 1) = (1 + 1)x + (1 + 1) = 0x + 0 = 0.

Ex. Find the sum and product of $f(x) = 4x - 5$ and $g(x) = 2x^2 - 4x + 2$ in $\mathbb{Z}_8[x]$.

$$
f(x) + g(x) = (4x - 5) + (2x2 - 4x + 2)
$$

= 2x² + (4 - 4)x + (2 - 5)
= 2x² - 3
= 2x² + 5 in Z₈[x].

$$
f(x)g(x) = (4x - 5)(2x2 - 4x + 2)
$$

= (4 · 2)x³ - (4 · 4)x² + (4 · 2)x - (5 · 2)x² + (5 · 4)x - (5 · 2)
= 0x³ - 0x² + 0x - 2x² + 4x - 2
(since 10 \equiv 2 (mod 8) and 20 \equiv 4 (mod 8))
= -2x² + 4x - 2
= 6x² + 4x + 6.

We define $R[x_1, x_2, ..., x_n]$ the ring of polynomials in n indeterminants with coefficients in R in the usual way.

Ex. What are the units of $\mathbb{Z}_5[x]$?

So given an element $f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$ when is there a $g(x) = b_0 + b_1 x + b_2 x^2 + \dots + b_m x^m$ such that $(f(x))(g(x)) = 1$ in $\mathbb{Z}_5[x]$?

Notice that $\mathbb{Z}_5 \subseteq \mathbb{Z}_5[\mathbb{X}]$, and \mathbb{Z}_5 is a field (but $\mathbb{Z}_5[\mathbb{X}]$ isn't a field).

Thus, any non-zero element in \mathbb{Z}_5 has an inverse. So the polynomials $f(x) = 1$, $f(x) = 2$, $f(x) = 3$, and $f(x) = 4$ are units in $\mathbb{Z}_5[x]$.

Suppose
$$
f(x) = a_0 + a_1x + a_2x^2 + \dots + a_nx^n
$$
 has an inverse
 $g(x) = b_0 + b_1x + b_2x^2 + \dots + b_mx^m$ in $\mathbb{Z}_5[x]$.

Let's assume $a_n \neq 0$ for some $n > 0$ i.e. $f(x)$ is not a constant function, then $f(x)g(x) = c_0 + c_1 x + c_2 x^2 + \dots + c_{n+m} x^{(n+m)}$ where the highest power of $f(x)g(x)$ is a_nb_m where a_n is the coefficient of the highest power of $f(x)$ (with a non-zero coefficient) and b_m is the coefficient of the highest power of $g(x)$ (with a non-zero coefficient).

Since $a_n \neq 0$, $a_n b_m x^{n+m}$, does not have $n+m=0$.

But In order for $f(x)g(x) = 1$, all coefficients $c_1, c_2, ..., c_{n+m}$ must be 0.

But that would mean $a_n b_m = 0$ and that can't happen because \mathbb{Z}_5 is a field and has no 0 divisors. Thus, the only units of $\mathbb{Z}_5[x]$ are the constant functions $f(x) = 1$, $f(x) = 2$, $f(x) = 3$, and $f(x) = 4$.

If D is an integral domain then so is $D[x]$. The argument is similar to the one used in the previous example. If

$$
f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n
$$

$$
g(x) = b_0 + b_1 x + b_2 x^2 + \dots + b_m x^m
$$

then the only way for $f(x)g(x) = 0$ (that is, the product is the 0 polynomial) is for all coefficients of the product $f(x)g(x)$ to be 0.

The coefficient of the highest power of $f(x)g(x)$ is a_nb_m , where $a_n \neq 0$, $b_m\neq 0.$ Thus the only way for $a_n b_m=0$ is for there to be 0 divisors in $D.$ But D is an integral domain so that can't happen.

If F is a field (and hence an integral domain) $F[x]$ is an integral domain but not a field since x is not a unit (i.e. there is no $f(x) \in F[x]$ with $xf(x) = 1$) However, we can form the field of rational functions from the integral domain $F[x]$ (as we did earlier) by creating the field of quotients for $F[x]$.

Theorem:

Let F be a subfield of a field E .

Let $\alpha \in E$, and let x be an indeterminant.

The map ϕ_{α} : $F[x] \rightarrow E$ is defined by:

 $\phi_{\alpha}(a_0 + a_1x + a_2x^2 + \dots + a_nx^n) = a_0 + a_1(\alpha) + a_2\alpha^2 + \dots + a_n\alpha^n$ is a homomorphism of $F[x]$ into E.

In particular, $\phi_\alpha(x) = \alpha$, for all $\alpha \in F$, maps F isomorphically into $E.$ The homomorphism ϕ_{α} is called the **evaluation homomorphism** at α .

Proof: The fact that ϕ_{α} is a homomorphism comes from the definition of addition and multiplication in $F[x]$.

$$
\text{If } f(x) = a_0 + a_1 x + \dots + a_n x^n,
$$
\n
$$
g(x) = b_0 + b_1 x + \dots + b_m x^m
$$
\n
$$
h(x) = f(x) + g(x) = c_0 + c_1 x + \dots + c_n x^n, \text{ where } n \ge m \text{, then}
$$
\n
$$
\phi_\alpha(f(x) + g(x)) = \phi_\alpha(h(x)) = c_0 + c_1 \alpha + \dots + c_n \alpha^n
$$
\n
$$
\phi_\alpha(f(x)) + \phi_\alpha(g(x))
$$
\n
$$
= a_0 + a_1 \alpha + \dots + a_n \alpha^n + b_0 + b_1 \alpha + \dots + b_m \alpha^m
$$

By the definition of addition in $F[\mathbf{x}]$, $|c_i = a_i + b_i$, so

$$
\phi_{\alpha}(f(x) + g(x)) = \phi_{\alpha}(f(x)) + \phi_{\alpha}(g(x)).
$$

$$
f(x)g(x) = d_0 + d_1x + \dots + d_sx^s \text{ and}
$$

\n
$$
\phi_{\alpha}(f(x)g(x)) = d_0 + d_1\alpha + \dots + d_s\alpha^s
$$

\n
$$
[\phi_{\alpha}(f(x))][\phi_{\alpha}(g(x))]
$$

\n
$$
= (a_0 + a_1\alpha + \dots + a_n\alpha^n)(b_0 + b_1\alpha + \dots + b_m\alpha^m)
$$

By the definition of multiplication in $F[x]$:

$$
\phi_{\alpha}(f(x)g(x)) = [\phi_{\alpha}(f(x))][\phi_{\alpha}(g(x))].
$$

If $f(x) = a$ is a constant polynomial in $F[x]$, then $\phi_\alpha(a) = a.$ So ϕ_{α} maps the constant functions isomorphically onto $F \subseteq E$. By the definition of ϕ_α , $\phi_\alpha(x) = \alpha$.

Ex. Let $F = \mathbb{Q}$, and $E = \mathbb{R}$. Consider $\phi_3 \colon \mathbb{Q}[x] \to \mathbb{R}$. $\phi_3(a_0 + a_1x + \dots + a_nx^n) = a_0 + a_1(3) + \dots + a_n(3)^n.$ Notice that $\phi_3(x^2 - x - 6) = 3^2 - 3 - 6 = 0$. So x^2-x-6 is in the kernel of $\phi_3.$ What is the kernel of ϕ_3 ?

$$
\ker(\phi_3) = \{ f(x) \in \mathbb{Q}[x] | f(3) = 0 \}.
$$

Ex. Let $F = \mathbb{Q}$, and $E = \mathbb{C}$ and consider:

$$
\phi_{2i}(a_0 + a_1 x + \dots + a_n x^n) = a_0 + a_1(2i) + \dots + a_n(2i)^n
$$

where $i^2 = -1$.
Notice that $\phi_{2i}(x^2 + 4) = (2i)^2 + 4 = 0$.
So $x^2 + 4$ is in the ker $(\phi_{2i}) = \{f(x) \in \mathbb{Q}[x] | f(2i) = 0\}$.

Def. Let F be a subfield of a field E, and let α be an element of E.

Let $f(x) = a_0 + a_1 x + \dots + a_n x^n \in F[x]$, and let $\phi_\alpha : F[x] \to E$ be the evaluation homomorphism. Let $f(\alpha)$ denote $\phi_\alpha\left(f(x)\right)=a_0+a_1\alpha+\cdots+a_n\alpha^n.$ If $f(\alpha) = 0$, then α is a **zero of** $f(x)$.

Ex. Find all of the zeros of $x^4 + 2x^2 + 2x$ in \mathbb{Z}_7 .

Since \mathbb{Z}_7 only has 7 elements we can just evaluate the polynomial for each value and see where it's 0 in \mathbb{Z}_7 .

So the zeros occur at $x = 0$, $x = 2$, $x = 3$.