Fermat's Little Theorem and Euler's Theorem

Theorem: In any field, F , the non-zero elements, U , form a group under the field multiplication.

Proof:

- 0. *U* is closed under multiplication since if $x, y \in U$, then by definition $x \neq 0$ and $y \neq 0$. But then $xy \neq 0$ otherwise F would have zero divisors. So $xv \in U$.
- 1. The multiplication in F is associative since F is also a ring.
- 2. The identity element $1 \in F$ is in U since it's non-zero.
- 3. If $x \in U$ then by definition x is a unit and has a non-zero inverse which is also in U .

Hence, U is a group under the field multiplication.

In particular, the non-zero elements of \mathbb{Z}_p , p being a prime number, form a group. Thus, $\{1, 2, ..., p-1\}$ is a group of order $p-1$ under multiplication modulo p .

Since the order of any element of the group must divide the order of the group, if $a \neq 0, a \in \mathbb{Z}_p$ then $a^{p-1} = 1$ in \mathbb{Z}_p .

Since \mathbb{Z}_p is isomorphic to the group of cosets:

 ${p\mathbb{Z}, 1 + p\mathbb{Z}, 2 + p\mathbb{Z}, ..., (p-1) + p\mathbb{Z}}.$

This gives us: $a^{p-1} \equiv 1 \ (mod \ p).$

Note: the notation $a^{p-1}\equiv 1\ (mod\ p)$ read as " a^{p-1} is congruent to 1 modulo $p^{\prime \prime}$, is often used in place of $a^{p - 1} = 1 \ (mod \ p).$

Thus we have:

Little Theorem of Fermat: If $a \in \mathbb{Z}$ and p is prime not dividing a , then p divides $a^{p-1}-1$, that is, $a^{p-1}\equiv 1\ (mod\ p)$ for $a\not\equiv 0\ (mod\ p).$

Corollary: If $a \in \mathbb{Z}$, then $a^p \equiv a \ (mod \ p)$ for any prime p .

Proof: If $a \not\equiv 0 \pmod{p}$ then this follows from the previous theorem.

If $a \equiv 0 \pmod{p}$ then both sides are 0 modulo p.

Ex. Find the remainder of 8^{100} when divided by 13 , i.e. find 8^{100} $(mod \; 13).$

We know by the The Little Theorem of Fermat that when $p = 13$ and $a = 8$ we have: $1^{3-1} = 8^{12} \equiv 1 \pmod{13}.$

> Thus: $(1^2)^b \equiv 1 \pmod{13}$ for any integer b.

Write:

$$
8^{100} = (8^{12})^8 (8^4) \equiv (1)^8 (8^4)
$$

\n
$$
\equiv 8^4 \equiv (-5)^4
$$

\n
$$
\equiv (-25)^2 (-25)^2 \equiv (25)^2 (25)^2
$$

\n
$$
\equiv (-1)^2 (-1)^2 \equiv 1 \pmod{13}.
$$

Ex. Show $2^{2023} + 1$ is not divisible by 11 (i.e. $2^{2023} + 1 \not\equiv 0 \ (mod \ 11)$).

By Fermat's Theorem we know:

if $a = 2$ and $p = 11$, $2^{10} \equiv 1 \ (mod \ 11)$.

$$
2^{2023} + 1 = ((2^{10})^{202} \cdot 2^3) + 1
$$

$$
\equiv [(1^{202}) \cdot (2^3)] + 1
$$

$$
\equiv 8 + 1 \equiv 9 \pmod{11}.
$$

Thus the remainder when dividing $2^{2023} + 1$ by 11 is 9 and not 0.

- Theorem: The set H_n of non-zero elements of \mathbb{Z}_n that are not zero divisors form a group under multiplication modulo n .
- Def. Let $n \in \mathbb{Z}^+$ and let $\boldsymbol{\varphi}(\boldsymbol{n})$ be the number of positive integers relatively prime to *n*. Note: $\varphi(1) = 1$.
- Ex. Let $n = 18$ find $\varphi(n)$.

 $\varphi(n)$ is the number of positive integers relatively prime to 18.

The positive integers relatively prime to 18 are:

$$
1, 5, 7, 11, 13, 17.
$$

So $\varphi(18) = 6$.

By an earlier theorem, $\varphi(n)$ is the number of non-zero elements of \mathbb{Z}_n that are not zero divisors.

Def. The function $\varphi \colon \mathbb{Z}^{+} \to \mathbb{Z}^{+}$ is called the **Euler Phi Function**.

Euler's Theorem: If a is an integer relatively prime to n , then $a^{\varphi(n)} - 1$ is divisible by n , that is $a^{\varphi(n)} \equiv 1 \ (mod \ n).$

Proof: If a is relatively prime to n, then the coset $a + n\mathbb{Z}$ of $n\mathbb{Z}$ containing a contains an integer $b < n$ and relatively prime to n . Using the fact that multiplication of cosets by multiplication modulo n of representatives is well defined, we have: $a^{\varphi(n)} \equiv b^{\varphi(n)} \ (mod \ n).$ If H_n is the group of non-zero elements in \mathbb{Z}_n that are not 0 divisors then $|H_n| = \varphi(n)$, thus $b^{\varphi(n)} \equiv 1 (mod \; n).$

> Note: if $n = p$, then $\varphi(n) = n - 1$, thus we get Fermat's Theorem: $a^{p-1} \equiv 1 \ (mod \ p).$

Ex. Show that $11^6 - 1$ is divisible by 18 using Euler's theorem.

Let $n = 18$. Then as we saw earlier, $\varphi(18) = 6$.

If we take any integer that is relatively prime to 18 , 11 for example, then by Euler's theorem, $11^6 \equiv 1 \ (mod \ 18)$.

$$
\implies 11^6 - 1 \equiv 0 \ (mod \ 18) \implies 11^6 - 1
$$
 is divisible by 18.

Of course it's easy enough to compute 11^6 in \mathbb{Z}_{18} by:

$$
112 \equiv 121 \ (mod\ 18) \equiv 13 \ (mod\ 18)
$$

\n
$$
114 \equiv (112)(112) \ (mod\ 18) \equiv 132 \ (mod\ 18) \equiv 7 \ (mod\ 18)
$$

\n
$$
116 \equiv 114 \cdot 112 \ (mod\ 18) \equiv (7 \cdot 13) \ (mod\ 18)
$$

\n
$$
\equiv 1 \ (mod\ 18).
$$

Ex. Find 29^{6008} (mod 18).

18 and 29 are relatively prime so by Euler's theorem

$$
29^{\varphi(18)} = 29^6 \equiv 1 \ (mod \ 18).
$$

Thus we have:

$$
29^{6008} \equiv (29^6)^{1001} (29^2) \pmod{18}
$$

\n
$$
\equiv (1)^{1001} (29^2) \pmod{18}
$$

\n
$$
\equiv (11^2) \pmod{18} \quad \text{since } 29 \equiv 11 \pmod{18}
$$

\n
$$
\equiv (121) \pmod{18}
$$

\n
$$
\equiv 13 \pmod{18}.
$$

Theorem: Let *m* be a positive integer and let $a \in \mathbb{Z}_n$ be relative prime to *n*. For each $b \in \mathbb{Z}_n$ the equation $ax = b$ has a unique solution in \mathbb{Z}_n .

- Proof: a is a unit in \mathbb{Z}_n so $a^{-1}(ax) = a^{-1}b$. $x = a^{-1}b$ is the only solution.
- Corollary: If a and m are relatively prime integers, then for any integer b , $ax \equiv b \pmod{n}$ has as solutions all integers in precisely one residue class modulo n .
- Theorem: Let *n* be a positive integer and let $a, b \in \mathbb{Z}_n$. Let $d = GCD(a, n)$. The equation $ax = b$ has a solution in \mathbb{Z}_n if, and only if, d divides b. When d divides b, the equation has exactly d solutions in \mathbb{Z}_n .

Proof: First let's show $ax = b$ in \mathbb{Z}_n has no solutions unless d divides b.

Suppose $s \in \mathbb{Z}_n$ is a solution. Then $as - b = qn$ in $\mathbb Z$ so, $b = as - qn$. Since d divides both a and n, d must divide $as - qn = b$. Thus a solution S can exist only if d divides b .

Suppose that d does divide b .

Let $a = a_1 d$, $b = b_1 d$, and $n = n_1 d$.

Then the equation $as - b = qn$ in $\mathbb Z$ can be written:

$$
a_1 ds - b_1 d = qn_1 d
$$

$$
d(a_1 s - b_1) = d(qn_1).
$$

So $(as - b)$ is a multiple of n if, and only if, $a_1 s - b_1$ is a multiple of n_1 . Thus, the solutions *s* of $ax = b$ in \mathbb{Z}_n are precisely the solutions of $a_1x = b_1$ in \mathbb{Z}_{n_1} .

Now let $s \in \mathbb{Z}_{n_1}$ be the unique solution of $a_1x = b_1$ in \mathbb{Z}_{n_1}

(since a_1 is relatively prime to n_1 , there is a unique solution by the previous theorem).

The numbers in \mathbb{Z}_n that reduce to $s \pmod{n_1}$ are those given by:

$$
s, s+n_1, s+2n_1, s+n, ..., s+(d-1)n_1.
$$

Thus there are exactly d solutions.

Corollary: Let $d = GCD(a, n)$, $a, n \in \mathbb{Z}^+$. The congruence $ax \equiv b \pmod{n}$ has a solution if, and only if, d divides b. When this is the case, the solutions are the integers in exactly d distinct residue classes modulo n .

Ex. Find all solutions of $155x \equiv 16 \ (mod \ 65)$.

 $GCD(155, 65) = 5$ and 5 does not divide 16 so there are no solutions in \mathbb{Z}_{65} .

Ex. Find all integer solutions of $155x \equiv 75 \ (mod \ 65)$.

 $GCD(155, 65) = 5$ and 5 does divide 75 so there are 5 solutions in \mathbb{Z}_{65} .

Start by dividing the equation and the 65 by $5.$

$$
31x \equiv 15 \pmod{13}
$$

also 15 (mod 13) $\equiv 2 \pmod{13}$
so $31x \equiv 2 \pmod{13}$.

$$
now 13x \equiv 0 \ (mod 13) \qquad \text{(for any } x \in \mathbb{Z})
$$
\n
$$
So solve: \ (31 \mod 13)x \equiv 2 \ (mod 13)
$$
\n
$$
5x \equiv 2 \ (mod 13).
$$

The multiplicative inverse of 5 in \mathbb{Z}_{13} is 8 because:

 $(8)(5)$ (mod 13) \equiv 40 (mod 13) \equiv 1 (mod 13).

So,
$$
8(5x) \equiv 8(2) \pmod{13}
$$

$$
x \equiv 16 \pmod{13}
$$

$$
x \equiv 3 \pmod{13}.
$$

So $3 + 65\mathbb{Z} = \{...,-127,-62,3,68,133,...\}$ are all solutions of $155x \equiv 75 \ (mod \ 65).$

The other integer solutions are gotten by:

$$
\left(3 + \left(\frac{65}{5}\right)\right) + 65\mathbb{Z} = 16 + 65\mathbb{Z} = \{\dots, -144, -49, 16, 81, \dots\}
$$
\n
$$
\left(3 + 2\left(\frac{65}{5}\right)\right) + 65\mathbb{Z} = 29 + 65\mathbb{Z} = \{\dots, -101, -36, 29, 94, \dots\}
$$
\n
$$
\left(3 + 3\left(\frac{65}{5}\right)\right) + 65\mathbb{Z} = 42 + 65\mathbb{Z} = \{\dots, -88, -23, 42, 107, \dots\}
$$
\n
$$
\left(3 + 4\left(\frac{65}{5}\right)\right) + 65\mathbb{Z} = 55 + 65\mathbb{Z} = \{\dots, -75, -10, 55, 120, \dots\}.
$$

The 5 solutions in \mathbb{Z}_{65} are 3, 16, 29, 42, and 55.

Ex. Find all solutions in $\mathbb Z$ to $20x \equiv 28 \pmod{32}$.

In this case $a = 20$, $b = 28$, and $m = 32$.

 $d = GCD(20,32) = 4$ and 4 divides 28, so there are 4 cosets in the solution.

Start by dividing the equation and the 32 by 4:

$$
20x \equiv 28 \pmod{32}
$$

$$
5x \equiv 7 \pmod{8}.
$$

The multiplicative inverse of 5 in \mathbb{Z}_8 is 5 so multiply the equation by 5:

$$
(5)5x \equiv (5)7 \pmod{8}
$$

$$
x \equiv 35 \pmod{8}
$$

$$
x \equiv 3 \pmod{8}.
$$

So $3 + 32\mathbb{Z} = \{..., -61, -29, 3, 35, 67, ...\}$ are all solutions of $20x \equiv 28 \pmod{32}$.

The other integer solutions are given by:

$$
3 + \frac{m}{d} + 32\mathbb{Z} = 3 + 8 + 32\mathbb{Z} = 11 + 32\mathbb{Z} = \{..., -53, -21, 11, 43, 75, ...\}
$$

$$
3 + \frac{2m}{d} + 32\mathbb{Z} = 3 + 16 + 32\mathbb{Z} = 19 + 32\mathbb{Z} = \{..., -45, -13, 19, 51, 83, ...\}
$$

$$
3 + \frac{3m}{d} + 32\mathbb{Z} = 3 + 24 + 32\mathbb{Z} = 27 + 32\mathbb{Z} = \{..., -37, -5, 27, 59, 91, ...\}.
$$

The 4 solutions in \mathbb{Z}_{32} are given by $\{3, 11, 19, 27\}$.