Fermat's Little Theorem and Euler's Theorem

Theorem: In any field, F, the non-zero elements, U, form a group under the field multiplication.

Proof:

- 0. *U* is closed under multiplication since if $x, y \in U$, then by definition $x \neq 0$ and $y \neq 0$. But then $xy \neq 0$ otherwise *F* would have zero divisors. So $xy \in U$.
- 1. The multiplication in *F* is associative since *F* is also a ring.
- 2. The identity element $1 \in F$ is in U since it's non-zero.
- 3. If $x \in U$ then by definition x is a unit and has a non-zero inverse which is also in U.

Hence, U is a group under the field multiplication.

In particular, the non-zero elements of \mathbb{Z}_p , p being a prime number, form a group. Thus, $\{1, 2, ..., p-1\}$ is a group of order p-1 under multiplication modulo p.

Since the order of any element of the group must divide the order of the group, if $a \neq 0, a \in \mathbb{Z}_{v}$ then $a^{p-1} = 1$ in \mathbb{Z}_{v} .

Since \mathbb{Z}_p is isomorphic to the group of cosets:

{ $p\mathbb{Z}$, 1 + $p\mathbb{Z}$, 2 + $p\mathbb{Z}$, ..., (p - 1) + $p\mathbb{Z}$ }.

This gives us: $a^{p-1} \equiv 1 \pmod{p}$.

Note: the notation $a^{p-1} \equiv 1 \pmod{p}$ read as " a^{p-1} is congruent to 1 modulo p", is often used in place of $a^{p-1} = 1 \pmod{p}$.

Thus we have:

Little Theorem of Fermat: If $a \in \mathbb{Z}$ and p is prime not dividing a, then p divides $a^{p-1} - 1$, that is, $a^{p-1} \equiv 1 \pmod{p}$ for $a \not\equiv 0 \pmod{p}$.

Corollary: If $a \in \mathbb{Z}$, then $a^p \equiv a \pmod{p}$ for any prime p.

Proof: If $a \neq 0 \pmod{p}$ then this follows from the previous theorem.

If $a \equiv 0 \pmod{p}$ then both sides are 0 modulo p.

Ex. Find the remainder of 8^{100} when divided by 13, i.e. find $8^{100} \pmod{13}$.

We know by the The Little Theorem of Fermat that when p = 13 and a = 8 we have: $8^{13-1} = 8^{12} \equiv 1 \pmod{13}$.

Thus: $(8^{12})^b \equiv 1 \pmod{13}$ for any integer b.

Write:

$$8^{100} = (8^{12})^8 (8^4) \equiv (1)^8 (8^4)$$
$$\equiv 8^4 \equiv (-5)^4$$
$$\equiv (-25)^2 (-25)^2 \equiv (25)^2 (25)^2$$
$$\equiv (-1)^2 (-1)^2 \equiv 1 \pmod{13}.$$

Ex. Show $2^{2023} + 1$ is not divisible by 11 (i.e. $2^{2023} + 1 \neq 0 \pmod{11}$).

By Fermat's Theorem we know:

if a = 2 and p = 11, $2^{10} \equiv 1 \pmod{11}$.

$$2^{2023} + 1 = ((2^{10})^{202} \cdot 2^3) + 1$$
$$\equiv [(1^{202}) \cdot (2^3)] + 1$$
$$\equiv 8 + 1 \equiv 9 (mod \ 11).$$

Thus the remainder when dividing $2^{2023} + 1$ by 11 is 9 and not 0.

- Theorem: The set H_n of non-zero elements of \mathbb{Z}_n that are not zero divisors form a group under multiplication modulo n.
- Def. Let $n \in \mathbb{Z}^+$ and let $\varphi(n)$ be the number of positive integers relatively prime to n. Note: $\varphi(1) = 1$.
- Ex. Let n = 18 find $\varphi(n)$.

 $\varphi(n)$ is the number of positive integers relatively prime to 18.

The positive integers relatively prime to 18 are:

So $\varphi(18) = 6$.

By an earlier theorem, $\varphi(n)$ is the number of non-zero elements of \mathbb{Z}_n that are not zero divisors.

Def. The function $\varphi \colon \mathbb{Z}^+ \to \mathbb{Z}^+$ is called the **Euler Phi Function**.

Euler's Theorem: If a is an integer relatively prime to n, then $a^{\varphi(n)} - 1$ is divisible by n, that is $a^{\varphi(n)} \equiv 1 \pmod{n}$.

Proof: If *a* is relatively prime to *n*, then the coset $a + n\mathbb{Z}$ of $n\mathbb{Z}$ containing *a* contains an integer b < n and relatively prime to *n*. Using the fact that multiplication of cosets by multiplication modulo *n* of representatives is well defined, we have: $a^{\varphi(n)} \equiv b^{\varphi(n)} \pmod{n}$. If H_n is the group of non-zero elements in \mathbb{Z}_n that are not 0 divisors then $|H_n| = \varphi(n)$, thus $b^{\varphi(n)} \equiv 1 \pmod{n}$.

> Note: if n = p, then $\varphi(n) = n - 1$, thus we get Fermat's Theorem: $a^{p-1} \equiv 1 \pmod{p}$.

Ex. Show that $11^6 - 1$ is divisible by 18 using Euler's theorem.

Let n = 18. Then as we saw earlier, $\varphi(18) = 6$.

If we take any integer that is relatively prime to 18, 11 for example, then by Euler's theorem, $11^6 \equiv 1 \pmod{18}$.

$$\Rightarrow 11^6 - 1 \equiv 0 \pmod{18} \Rightarrow 11^6 - 1$$
 is divisible by 18.

Of course it's easy enough to compute 11^6 in \mathbb{Z}_{18} by: $11^2 \equiv 121 \pmod{18} \equiv 13 \pmod{18}$ $11^4 \equiv (11^2)(11^2) \pmod{18} \equiv 13^2 \pmod{18} \equiv 7 \pmod{18}$ $11^6 \equiv 11^4 \cdot 11^2 \pmod{18} \equiv (7 \cdot 13) \pmod{18}$

 $\equiv 1 \pmod{18}$.

Ex. Find $29^{6008} \pmod{18}$.

18 and 29 are relatively prime so by Euler's theorem

$$29^{\varphi(18)} = 29^6 \equiv 1 \pmod{18}.$$

Thus we have:

$$29^{6008} \equiv (29^6)^{1001} (29^2) \pmod{18}$$

$$\equiv (1)^{1001} (29^2) \pmod{18}$$

$$\equiv (11^2) \pmod{18} \quad \text{since } 29 \equiv 11 \pmod{18}$$

$$\equiv (121) \pmod{18}$$

$$\equiv 13 \pmod{18}.$$

- Theorem: Let *m* be a positive integer and let $a \in \mathbb{Z}_n$ be relative prime to *n*. For each $b \in \mathbb{Z}_n$ the equation ax = b has a unique solution in \mathbb{Z}_n .
- Proof: a is a unit in \mathbb{Z}_n so $a^{-1}(ax) = a^{-1}b$. $x = a^{-1}b$ is the only solution.
- Corollary: If a and m are relatively prime integers, then for any integer b, $ax \equiv b \pmod{n}$ has as solutions all integers in precisely one residue class modulo n.
- Theorem: Let n be a positive integer and let $a, b \in \mathbb{Z}_n$. Let d = GCD(a, n). The equation ax = b has a solution in \mathbb{Z}_n if, and only if, d divides b. When d divides b, the equation has exactly d solutions in \mathbb{Z}_n .

Proof: First let's show ax = b in \mathbb{Z}_n has no solutions unless d divides b.

Suppose $s \in \mathbb{Z}_n$ is a solution. Then as - b = qn in \mathbb{Z} so, b = as - qn. Since d divides both a and n, d must divide as - qn = b. Thus a solution s can exist only if d divides b. Suppose that d does divide b.

Let $a = a_1 d$, $b = b_1 d$, and $n = n_1 d$.

Then the equation as - b = qn in \mathbb{Z} can be written:

$$a_1 ds - b_1 d = qn_1 d$$
$$d(a_1 s - b_1) = d(qn_1).$$

So (as - b) is a multiple of n if, and only if, $a_1s - b_1$ is a multiple of n_1 . Thus, the solutions s of ax = b in \mathbb{Z}_n are precisely the solutions of $a_1x = b_1$ in \mathbb{Z}_{n_1} .

Now let $s \in \mathbb{Z}_{n_1}$ be the unique solution of $a_1 x = b_1$ in \mathbb{Z}_{n_1}

(since a_1 is relatively prime to n_1 , there is a unique solution by the previous theorem).

The numbers in \mathbb{Z}_n that reduce to $s \pmod{n_1}$ are those given by:

$$s, s+n_1, s+2n_1, s+n, \dots, s+(d-1)n_1.$$

Thus there are exactly d solutions.

Corollary: Let d = GCD(a, n), $a, n \in \mathbb{Z}^+$. The congruence $ax \equiv b \pmod{n}$ has a solution if, and only if, d divides b. When this is the case, the solutions are the integers in exactly d distinct residue classes modulo n. Ex. Find all solutions of $155x \equiv 16 \pmod{65}$.

GCD(155,65) = 5 and 5 does not divide 16 so there are no solutions in \mathbb{Z}_{65} .

Ex. Find all integer solutions of $155x \equiv 75 \pmod{65}$.

GCD(155,65) = 5 and 5 does divide 75 so there are 5 solutions in \mathbb{Z}_{65} .

Start by dividing the equation and the 65 by 5.

$$31x \equiv 15 \pmod{13}$$

also $15 \pmod{13} \equiv 2 \pmod{13}$
so $31x \equiv 2 \pmod{13}$.

now
$$13x \equiv 0 \pmod{13}$$
 (for any $x \in \mathbb{Z}$)
So solve: $(31 \mod 13)x \equiv 2 \pmod{13}$
 $5x \equiv 2 \pmod{13}$.

The multiplicative inverse of 5 in \mathbb{Z}_{13} is 8 because:

 $(8)(5) \pmod{13} \equiv 40 \pmod{13} \equiv 1 \pmod{13}$.

So,

$$8(5x) \equiv 8(2) \pmod{13}$$

 $x \equiv 16 \pmod{13}$
 $x \equiv 3 \pmod{13}$.

So $3 + 65\mathbb{Z} = \{\dots, -127, -62, 3, 68, 133, \dots\}$ are all solutions of $155x \equiv 75 \pmod{65}$.

The other integer solutions are gotten by:

$$\left(3 + \left(\frac{65}{5}\right)\right) + 65\mathbb{Z} = 16 + 65\mathbb{Z} = \{\dots, -144, -49, 16, 81, \dots\}$$

$$\left(3 + 2\left(\frac{65}{5}\right)\right) + 65\mathbb{Z} = 29 + 65\mathbb{Z} = \{\dots, -101, -36, 29, 94, \dots\}$$

$$\left(3 + 3\left(\frac{65}{5}\right)\right) + 65\mathbb{Z} = 42 + 65\mathbb{Z} = \{\dots, -88, -23, 42, 107, \dots\}$$

$$\left(3 + 4\left(\frac{65}{5}\right)\right) + 65\mathbb{Z} = 55 + 65\mathbb{Z} = \{\dots, -75, -10, 55, 120, \dots\}$$

The 5 solutions in \mathbb{Z}_{65} are 3, 16, 29, 42, and 55.

Ex. Find all solutions in \mathbb{Z} to $20x \equiv 28 \pmod{32}$.

In this case a = 20, b = 28, and m = 32.

d = GCD(20,32) = 4 and 4 divides 28, so there are 4 cosets in the solution.

Start by dividing the equation and the 32 by 4:

$$20x \equiv 28 \pmod{32}$$
$$5x \equiv 7 \pmod{8}.$$

The multiplicative inverse of 5 in \mathbb{Z}_8 is 5 so multiply the equation by $5\colon$

$$(5)5x \equiv (5)7 \pmod{8}$$
$$x \equiv 35 \pmod{8}$$
$$x \equiv 3 \pmod{8}.$$

So $3 + 32\mathbb{Z} = \{\dots, -61, -29, 3, 35, 67, \dots\}$ are all solutions of $20x \equiv 28 \pmod{32}$.

The other integer solutions are given by:

$$3 + \frac{m}{d} + 32\mathbb{Z} = 3 + 8 + 32\mathbb{Z} = 11 + 32\mathbb{Z} = \{\dots, -53, -21, 11, 43, 75, \dots\}$$

$$3 + \frac{2m}{d} + 32\mathbb{Z} = 3 + 16 + 32\mathbb{Z} = 19 + 32\mathbb{Z} = \{\dots, -45, -13, 19, 51, 83, \dots\}$$

$$3 + \frac{3m}{d} + 32\mathbb{Z} = 3 + 24 + 32\mathbb{Z} = 27 + 32\mathbb{Z} = \{\dots, -37, -5, 27, 59, 91, \dots\}.$$

The 4 solutions in \mathbb{Z}_{32} are given by $\{3,11,19,27\}.$