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Integral Domains  

 

As we saw in the example of the ring ℤ6, in some rings it’s possible to have two 

non-zero elements 𝑎, 𝑏 such that 𝑎𝑏 = 0. In  ℤ6, (2)(3) = 0. In elementary 

algebra you learn to solve quadratic equations by factoring. 

 

Ex.    Solve 𝑥2 − 3𝑥 + 2 = 0 where 𝑥 ∈ ℝ.  

 

                       𝑥2 − 3𝑥 + 2 = (𝑥 − 2)(𝑥 − 1) = 0 

 We conclude that either 𝑥 − 2 = 0 or 𝑥 − 1 = 0 and the solutions 

 are 𝑥 = 2, 1.  

But this relies on the idea that if 𝑎𝑏 = 0 then 𝑎 = 0 or 𝑏 = 0 (or both). This is 

true for a field like ℝ or ℂ, but for a general ring  𝑎𝑏 = 0 does not imply  𝑎 = 0 

or 𝑏 = 0.  Thus in a general ring we may get more that 2 solutions to a quadratic 

equation. 

 

Ex.     Solve 𝑥2 − 3𝑥 + 2 = 0 where 𝑥 ∈ ℤ6.  

 

 We start by factoring: 

                             𝑥2 − 3𝑥 + 2 = (𝑥 − 2)(𝑥 − 1) = 0. 

 Notice that in ℤ6 there are several pairs of non-zero factors whose 

 product is 0. 

 

          (2)(3) = (3)(2) = (3)(4) = (4)(3) = 0. 
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 So, for example if 𝑥 − 2 = 2 and 𝑥 − 1 = 3 (both must happen) has a 

            solution in ℤ6 (which it does, 𝑥 = 4) then 4 is a solution to the quadratic 

            equation in  ℤ6. 

 Notice  42 − 3(4) + 2 = 16 − 12 + 2 = 6 = 0 (𝑚𝑜𝑑 6). 

 So in this case, since the factors are 𝑥 − 2 and 𝑥 − 1, the pair of 

 factors whose product is 0 must differ by 1. The other pair that works in 

          ℤ6 is  𝑥 − 2 = 3 and 𝑥 − 1 = 4,  i.e. 𝑥 = 5.  

 

          Since (𝑥 − 2)(𝑥 − 1) = 0 also has 𝑥 = 2, 𝑥 = 1 as solutions we have 

  the full set of solutions in ℤ6 is 𝑥 = 1, 2, 4, 5.  

 

Def.  If 𝑎 and 𝑏 are non-zero elements of a ring 𝑅 such that 𝑎𝑏 = 0, then 𝑎 and 

         𝑏 are called zero divisors. 

 

Theorem:  In the ring ℤ𝑛, the zero divisors are those non-zero elements    

         that are not relatively prime to 𝑛. 

 

Corollary:  If 𝑝 is a prime number, then ℤ𝑝 has no zero divisors. 

 

Theorem:  The cancellation laws (e.g. if 𝑏𝑎 = 𝑐𝑎 then 𝑏 = 𝑐) hold in a   

          ring 𝑅 if, and only if, 𝑅 has no zero divisors.  
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Thus, in a ring 𝑅 with no zero divisors the linear equation: 

𝑎𝑥 = 𝑏, with 𝑎 ≠ 0, 

can have at most one solution.  Since if 𝑎𝑥1 = 𝑏 and 𝑎𝑥2 = 𝑏 then,          

𝑎𝑥1 = 𝑎𝑥2 and 𝑥1 = 𝑥2 by our last theorem. Notice that ℤ is a ring with no 

zero divisors but 2𝑥 = 3 does not have a solution. 

If 𝑅 has unity 1 ≠ 0 and 𝑎 is a unit in 𝑅 (i.e. 𝑎−1 exists in 𝑅) then the solution 

to 𝑎𝑥 = 𝑏 is 𝑥 = 𝑎−1𝑏.  

If 𝑅 is a field then 𝑎−1𝑏 = 𝑏𝑎−1 and this is what we call  
𝑏

𝑎
  (if 𝑅 is not 

commutative then  
𝑏

𝑎
  is ambiguous since 𝑎−1𝑏 ≠ 𝑏𝑎−1, and the notation 

shouldn’t be used). 

 

Def.   An integral domain 𝐷 is a commutative ring with unity 1 ≠ 0 containing 

           no zero divisors.  

 

 Thus, if the coefficients of a polynomial are from an integral domain (like 

ℤ), and one can factor the polynomial into linear factors, then one can try to find 

solutions by setting each linear factor equal to zero and solving. However, there is 

no guarantee there will be a solution in the integral domain (e.g. 2𝑥 = 3, where 

the integral domain is ℤ). 

 

Ex.   ℤ and ℤ𝑝, for any prime number 𝑝 are integral domains. ℤ𝑛, where 𝑛 is 

         not prime is not an integral domain. If 𝑅 and 𝑆 are two non-zero rings 

        (integral domain or not) then 𝑅 × 𝑆 is not an integral domain because: 

(𝑟, 0) ∙ (0, 𝑠) = (0, 0), for any 𝑟 ∈ 𝑅 and 𝑠 ∈ 𝑆.  
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Ex.       Show 𝑀2(ℤ), 𝑀2(ℂ), 𝑀2(ℝ), 𝑀2(ℚ) and 𝑀2(ℤ𝑛) are not integral 

 domains even though ℤ, ℂ, ℝ, ℚ, and ℤ𝑝, 𝑝 a prime number, are 

 integral domains. 

 

Notice: (
1 0
0 0

) (
0 0
1 0

) = (
0 0
0 0

) in 𝑀2(ℤ), 𝑀2(ℂ), 𝑀2(ℝ), 𝑀2(ℚ), 𝑀2(ℤ𝑛). 

          In addition, the multiplication in these rings of matrices in not commutative. 

        Thus, none of those rings is an integral domain. 

 

Theorem:   Every field 𝐹 is an integral domain.  

 

Proof:   Let 𝑎, 𝑏 ∈ 𝐹 and suppose 𝑎 ≠ 0. Then if 𝑎𝑏 = 0, 𝑎−1 =
1

𝑎
             

            (since every non-zero element of a field is a unit, and all fields are       

              commutative) and:   

      0 =
1

𝑎
(𝑎𝑏) = (

1

𝑎
∙ 𝑎) 𝑏 = 1 ∙ 𝑏 = 𝑏. Thus if 𝑎𝑏 = 0,     

               𝑎 ≠ 0 then 𝑏 must equal 0 so there is no zero divisor in 𝐹. 

 

 

Theorem:  Every finite integral domain is a field (note: we have already   

         seen that ℤ𝑝, 𝑝 prime, is an integral domain). 

 

Proof:   Let 𝐷 = {0,1, 𝑥1, … , 𝑥𝑛} be a finite integral domain. 

              Given any 𝑥 ∈ 𝐷,  𝑥 ≠ 0 we must show there is, 𝑦 ∈ 𝐷, with 𝑥𝑦 = 1. 

            By the cancellation law 𝑥1, 𝑥𝑥1, … , 𝑥𝑥𝑛 must be distinct since if         

             𝑥𝑥𝑗 = 𝑥𝑥𝑘 then 𝑥𝑗 = 𝑥𝑘. 
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Hence 𝑥𝑥𝑚 = 1 for some 1 ≤ 𝑚 ≤ 𝑛 or 𝑥1 = 1.   

In either case, there is a 𝑦 ∈ 𝐷, with 𝑥𝑦 = 1. 

Thus all non-zero elements of 𝐷 are units and 𝐷 is a field. 

 

Corollary:  If 𝑝 is prime, ℤ𝑝 is a field. 

 

 

                                                           Diagram of Rings 

 

 

 

 

 

 

 

 

 

Ex.     Solve 5𝑥 = 3 in ℤ7 and ℤ19.  

 

 ℤ7 and ℤ19 are both fields because 7 and 19 are prime. If we can find the 

           multiplicative inverse of 5 in each field we can multiply both sides of the 

           equation to solve it.  

 

         We want to know, for what 𝑎 ∈ ℤ7 is 5𝑎 = 1? That is, 5𝑎 = 1 (𝑚𝑜𝑑 7). 

         So we want to solve 5𝑎 = 7𝑏 + 1 for some integers 𝑎 and 𝑏. 

Fields 

Integral Domains 

Commutative Rings Rings with Unity 
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         So when is  7𝑏 + 1 a multiple of 5? 

         Here we just have to search.  

 

 𝑏 = 2 gives 7(2) + 1 = 15. When 𝑎 = 3, 5(3) = 15 (𝑚𝑜𝑑 7) = 1. 

 Thus 3 is the multiplicative inverse of 5 and 

                                    5𝑥 = 3 

                          3(5𝑥) = 3(3) 

                                   𝑥 = 2 in ℤ7.         (notice that 5(2) = 3 (𝑚𝑜𝑑 7))   

      

 

In ℤ19 we want to know for what 𝑎 ∈ ℤ19 is 5𝑎 = 1?  

That is 5𝑎 = 1 (𝑚𝑜𝑑 19). 

So 5𝑎 = 19𝑏 + 1 for some integers 𝑎 and 𝑏.  

So when is  19𝑏 + 1 a multiple of 5?   

Again we just have to search.  

 

𝑏 = 1 works because 19(1) + 1 = 20 and 𝑎 = 4 i.e. 5(4) = 20. 

So 4 is the multiplicative inverse of 5 in ℤ19.  

                       5𝑥 = 3 

                 4(5𝑥) = 4(3) 

                          𝑥 = 12 in ℤ19      (notice that 5(12) = 3 (𝑚𝑜𝑑 19)).        

         


