Rings and Fields

Def. A **ring** $(R, +, \cdot)$ is a set R with two binary operations + and \cdot , called addition and multiplication, defined on R such that the following axioms are satisfied.

- 1) (R, +) is an abelian group
- 2) Multiplication is associative: $a \cdot (b \cdot c) = (a \cdot b) \cdot c$ (and R is closed under multiplication).
- 3) For all $a, b, c \in R$, the left and right distributive laws hold:

$$a \cdot (b + c) = (a \cdot b) + (a \cdot c)$$
$$(b + c) \cdot a = (b \cdot a) + (c \cdot a)$$

Ex. Any subset of \mathbb{C} that is a group under + is a ring under the usual addition and multiplication. Thus $(\mathbb{C}, +, \cdot)$, $(\mathbb{R}, +, \cdot)$, $(\mathbb{Q}, +, \cdot)$, and $(\mathbb{Z}, +, \cdot)$ are rings. We will refer to these rings as \mathbb{C} , \mathbb{R} , \mathbb{Q} , and \mathbb{Z} where the usual addition and multiplication are understood.

- Ex. Let R be any ring and let $M_n(R)$ be the set of all $n \times n$ matrices having elements of R as entries. $M_n(R)$ is a ring with the usual addition and multiplication of matrices. We can see this because:
 - 1) $M_n(R)$ is an abelian group under addition
 - 2) Matrix multiplication is associative (and $M_n(R)$ is closed under multiplication)
 - 3) Matrix addition and multiplication are distributive:

 $A \cdot (B + C) = (A \cdot B) + (A \cdot C)$ $(B + C) \cdot A = (B \cdot A) + (C \cdot A).$

In particular $M_n(\mathbb{C})$, $M_n(\mathbb{R})$, $M_n(\mathbb{Q})$, and $M_n(\mathbb{Z})$ are rings.

Notice in this example + is commutative (which is required by the definition of a ring) but matrix multiplication is not commutative for $n \ge 2$. A ring where \cdot is commutative is called a **commutative ring**.

Ex. Show F, the set of all functions $f \colon \mathbb{R} \to \mathbb{R}$, is a ring with the usual addition and multiplication of functions.

Define multiplication on *F* by: $(f \cdot g)(x) = f(x)g(x)$.

With the definitions of + and \cdot , F is a ring since:

1) We know (F, +) is an abelian group under the usual addition of functions: (f + g)(x) = f(x) + g(x).

2)
$$((f \cdot g) \cdot h)(x) = (f \cdot g)(x) \cdot h(x) = f(x) \cdot g(x) \cdot h(x)$$

 $(f \cdot (g \cdot h)) = f(x) \cdot (g \cdot h)(x) = f(x) \cdot g(x) \cdot h(x)$

and F is closed under multiplication.

3)
$$f \cdot (g + h)(x) = f(x)(g(x) + h(x)) = f(x)g(x) + f(x)h(x)$$

= $f \cdot g + f \cdot h$
 $(g + h) \cdot f(x) = (g(x) + h(x)) \cdot f(x) = g(x)f(x) + h(x)f(x)$
= $g \cdot f + h \cdot f$.

Notice that if we defined multiplication as composition of functions: i.e. $f \cdot g = (f \circ g)(x)$, F would not be a ring since this multiplication is not distributive. For example, let $f(x) = x^2$, g(x) = x, h(x) = x.

$$f \circ (g + h) = f \circ (2x) = (2x)^2 = 4x^2$$
$$f \circ g + f \circ h = x^2 + x^2 = 2x^2$$

So
$$f \circ (g+h) \neq f \circ g + f \circ h$$
.

Ex. Show that $n\mathbb{Z} = \{x \in \mathbb{Z} | x = ny \text{ for } y \in \mathbb{Z}\}$ is a ring.

 $n\mathbb{Z} = \{x \in \mathbb{Z} | x = ny \text{ for } y \in \mathbb{Z}\}$ is an abelian group under the usual addition.

 $n\mathbb{Z}$ is also closed under the usual multiplication since $x, y \in n\mathbb{Z}$ means x = na, y = nb for all $a, b \in \mathbb{Z}$, so xy = (na)(nb) = n(anb). Since $anb \in \mathbb{Z}$, $xy \in n\mathbb{Z}$.

The usual multiplication in \mathbb{Z} is closed, associative and satisfies the left and right distributive laws. Thus, these also work in $n\mathbb{Z}$.

Thus, $n\mathbb{Z}$ is a ring.

Ex. $(\mathbb{Z}_n, +)$ is an abelian group. If we define $a \cdot b = (ab) \pmod{n}$, \mathbb{Z}_n is a ring (we will show this later).

For example, in
$$\mathbb{Z}_{12}$$
, $7 \cdot 8 = (7(8)) \pmod{12}$
= 56 (mod 12)
= 8.

Notice that this is a little "weird". In a group if $a \cdot b = b$ then a is the identity element. That's not the case, in general, for rings.

Ex. If $R_1, R_2, ..., R_n$ are rings, we can form $R_1 \times R_2 \times ... \times R_n$ of all ordered *n*-tuples $(r_1, r_2, ..., r_n)$, where $r_i \in R_i$. We define addition and multiplication of *n*-tuples by component (as we did with groups). Since each component satisfies the ring axioms, so does the direct product $R_1 \times R_2 \times ... \times R_n$. Thus $R_1 \times R_2 \times ... \times R_n$ is a ring and is called the **direct product of rings** R_i . We will write $n \cdot a = a + a + \dots + a$, *n*-times. Note this is <u>not</u> necessarily the multiplication in the *R*. For example, if $R = M_2(\mathbb{R})$ and $A \in R$, then 3A = A + A + A. In fact, 3A wouldn't even make sense for matrix multiplication (at least as written) because 3 is not a 2×2 matrix.

If
$$n < 0$$
, an integer, $n \cdot a = (-a) + (-a) + (-a) + \dots + (-a)$.

We define $0 \cdot a = 0$, where the 0 on the left hand side is $0 \in \mathbb{Z}$, and 0 on the right hand side is the $0 \in R$ (which might not be a number. For example, It could be a matrix or a function).

Theorem: If R is a ring with additive identity 0, then for any $a, b \in R$:

- 1) 0a = a0 = 0. 2) a(-b) = (-a)b = -(ab). 3) (-a)(-b) = ab.
- Def. For rings R and R', a map $\phi: R \to R'$ is a **ring homomorphism** if for all $a, b \in R$.
 - 1) $\phi(a+b) = \phi(a) + \phi(b)$ 2) $\phi(ab) = \phi(a)\phi(b).$

Note: Since ϕ is also a group homomorphism of (R, +) to (R', +') all of the

properties of group homomorphism hold. In particular, ϕ is 1-1 if, and only

if, ker
$$\phi = \{a \in R | \phi(a) = 0'\}$$
 is $\{0\} \in R$.

Ex. Let *F* be the ring of all functions $f \colon \mathbb{R} \to \mathbb{R}$. For every $a \in \mathbb{R}$ we have the evaluation homomorphism $\phi_a \colon F \to \mathbb{R}$ by $\phi_a(f) = f(a)$.

$$\phi_a(f+g) = (f+g)(a) = f(a) + g(a) = \phi_a(f) + \phi_a(g).$$

$$\phi_a(fg) = (fg)(a) = f(a)g(a) = \phi_a(f)\phi_a(g).$$

This homomorphism is important because finding a root of an equation is the same as finding $p \in \mathbb{R}$ (or \mathbb{C}) such that

$$\phi_p(f) = f(p) = 0.$$

So f is in the kernel of ϕ_p .

Ex. Show that $\phi: \mathbb{Z} \to \mathbb{Z}_n$ where $\phi(z) = z \pmod{n}$ is a ring homomorphism for each positive integer n.

From group theory we know:

$$\phi(z+w) = \phi(z) + \phi(w).$$

To show $\phi(zw) = \phi(z)\phi(w)$ write:

$$z = q_1 n + r_1 \text{ and } w = q_2 n + r_2 \text{ where } 0 \le r_1, r_2 < n.$$

$$zw = (q_1 n + r_1)(q_2 n + r_2) = n(q_1 q_2 n + r_1 q_2 + r_2 q_1) + r_1 r_2.$$

Thus, $\phi(zw) = r_1 r_2 \pmod{n}$. But since $0 \le r_1, r_2 < n$: $r_1 = \phi(z)$ and $r_2 = \phi(w) \Longrightarrow \phi(zw) = \phi(z)\phi(w)$.

Note: From group theory we know the factor group $\mathbb{Z}/n\mathbb{Z}$ is isomorphic to \mathbb{Z}_n . The same will turn out to be true for $\mathbb{Z}/n\mathbb{Z}$ as a factor ring. Def: An **isomorphism** $\phi: R \to R'$ from a ring R to a ring R' is a ring homomorphism that is 1-1 and onto.

Not every group isomorphism (or homomorphism) is a ring isomorphism (or homomorphism).

Ex. Prove that the rings \mathbb{Z} and $5\mathbb{Z}$ are not isomorphic (although they are isomorphic as groups under addition by $\phi: \mathbb{Z} \to 5\mathbb{Z}$, $\phi(x) = 5x$).

Assume $\phi: \mathbb{Z} \to 5\mathbb{Z}$ is a ring isomorphism.

Then, $\phi(a + b) = \phi(a) + \phi(b)$ and $\phi(ab) = \phi(a)\phi(b)$.

Then
$$\phi(2a) = \phi(a) + \phi(a) = 2\phi(a)$$
.

But $\phi(2a) = \phi(2)\phi(a)$

$$\Rightarrow \phi(2) = 2$$

But $2 \notin 5\mathbb{Z}$, thus ϕ cannot be an isomorphism.

For example, if a = 3 and $\phi(x) = 5x$:

$$\phi(6) = \phi(3+3) = \phi(3) + \phi(3) = 15 + 15 = 30$$

$$\phi(6) = \phi(2 \cdot 3) = \phi(2) \cdot \phi(3) = 10 \cdot 15 = 150.$$

which is a contradiction, so ϕ is not a ring isomorphism.

<u>Fields</u>

Many rings have a multiplicative identity element. For example, 1 is the multiplicative identity element (i.e. $1 \cdot x = x$ for all $x \in R$) for the rings \mathbb{C} , \mathbb{R} , \mathbb{Q} , and \mathbb{Z} . But $2\mathbb{Z}$ is a ring and it doesn't have a multiplicative identity element.

- Def. A ring with a multiplicative identity element is a **ring with unity**. We will call this multiplicative identity element 1 (although it could be a matrix or function).
- Ex. If GCD(q, r) = 1 for positive integers q and r, show that the rings \mathbb{Z}_{qr} and $\mathbb{Z}_q \times \mathbb{Z}_r$ are isomorphic.

Additively, \mathbb{Z}_{qr} and $\mathbb{Z}_q \times \mathbb{Z}_r$ are both cyclic abelian groups of order qr. 1 is a generator for \mathbb{Z}_{qr} and (1, 1) is a generator for $\mathbb{Z}_q \times \mathbb{Z}_r$.

If we let $\phi: \mathbb{Z}_{qr} \to \mathbb{Z}_q \times \mathbb{Z}_r$ by $\phi(n \cdot 1) = n \cdot (1, 1)$ this is an additive group isomorphism since ϕ clearly 1-1, onto, and

$$\phi(n+m) = (n+m)(1,1)$$

= n(1,1) + m(1,1)
= $\phi(n) + \phi(m)$.

1 is the multiplicative unity in \mathbb{Z}_{qr} and (1, 1) is the multiplicative unity in $\mathbb{Z}_{q} \times \mathbb{Z}_{r}$. So:

$$\phi(nm) = nm(1,1) = [n(1,1)] \cdot [m(1,1)] = \phi(n)\phi(m).$$

- Note: a direct product $R_1 \times R_2 \times ... \times R_n$ of rings is commutative or has unity if, and only if, each R_i is commutative or has unity.
- Def. Let R be a ring with unity $1 \neq 0$. An element u in R is a **unit** of R if it has a multiplicative inverse in R. If every non-zero element of R is a unit, then R is a **division ring** (or **skew field**). A **field** is a commutative division ring. A non-commutative division ring is called a "**strictly skew field**."
- Ex. Find the units of \mathbb{Z}_6 .

 $a \in \mathbb{Z}_6$ is a unit of \mathbb{Z}_6 if there exists a $b \in \mathbb{Z}_6$ such that $ab = (ab) \pmod{6} = 1.$ 1 is a unit since $1 \cdot 1 = 1.$

No even number can be a unit in \mathbb{Z}_6 because if a is even, then $ab \in \mathbb{Z}$ is even (if b is an integer) so $ab \pmod{6} \neq 1$. Thus, 2 and 4 are not units.

 $(3)(2) \pmod{6} = 0,$ $(3)(3) \pmod{6} = 3,$ $(3)(4) \pmod{6} = 0,$ $(3)(5) \pmod{6} = 3.$ So 3 is not a unit.

 $(5)(5) \pmod{6} = 1$ so 5 is its own inverse and 5 is a unit.

Thus, 1 and 5 are the only units in \mathbb{Z}_6 . Thus, \mathbb{Z}_6 is not a field. We will see later that the only units in \mathbb{Z}_n are $m \in \mathbb{Z}_n$ such that GCD(m, n) = 1.

Ex. Show that \mathbb{Z}_3 is a field.

 \mathbb{Z}_3 is a commutative ring and 1, 2 $(2 \cdot 2 = 1 \pmod{3})$ are units. In fact, \mathbb{Z}_p , where p is a prime number, is a field because GCD(m, p) = 1 where p is prime and m is an integer $1 \le m < p$, so all elements except 0 are units.

Ex. \mathbb{Z} is not a field because 3, in particular, has no multiplicative inverse (neither do any other elements of \mathbb{Z} except 1 and -1).

Analogous to subgroups, a **subring** R' of a ring R is a subset of R and is a ring under + and \cdot defined on R. A **subfield** K' of a field K is a subset of K and is a field under + and \cdot defined on K.