Rings and Fields- HW Problems

For problems 1 and 2 find the product in the given ring.

- 1. (18)(2) in \mathbb{Z}_{24} .
- 2. (3, -4)(-5, 3) in $\mathbb{Z}_{10} \times \mathbb{Z}_8$

For problems 3-5 identify which of the sets are rings.

- 3. \mathbb{R}^+ with the usual addition and multiplication.
- 4. $4\mathbb{Z} \times \mathbb{Z}$ with addition and multiplication componentwise.
- 5. $\{a + b\sqrt{2} \mid a, b \in \mathbb{Q}^*\}$ with the usual addition and multiplication.

For problems 6-8 identify all of the units in the given ring.

- 6. $\mathbb{Q} \times \mathbb{Z}$
- 7. $\mathbb{Q} \times \mathbb{Z} \times \mathbb{Z}_4$
- 8. $\mathbb{Z}_4 \times \mathbb{R} \times \mathbb{Z}$

9. Let $\phi: M_n(\mathbb{R}) \to \mathbb{R}$, n > 1; by $\phi(A) = \det(A)$. Either prove that ϕ is a ring homomorphism or show why it isn't.

10. Show that the rings $2\mathbb{Z}$ and $5\mathbb{Z}$ are not isomorphic.

11. Show that $x^2 - y^2 = (x - y)(x + y)$ for all x, y in a ring R if and only if R is commutative.

12. Let p be a prime number. Use the binomial theorem to show that in \mathbb{Z}_p : $(x + y)^p = x^p + y^p$ for all $x, y \in \mathbb{Z}_p$.

13. Let R_1 and R_2 be subrings of a ring R. Prove that

$$R_1 \cap R_2 = \{ x \in R \mid x \in R_1, x \in R_2 \}$$

is a subring of R.