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Factor/Quotient Groups  

 

Def.   Let 𝐻 be a normal subgroup of a group 𝐺 (i.e. 𝑔𝐻 = 𝐻𝑔, for any 𝑔 ∈ 𝐺).  

    We define 𝐺/𝐻 (called “𝐺 𝑚𝑜𝑑 𝐻”) to be the set of distinct cosets of 𝐻 in 𝐺.  

𝑮/𝑯  =  {𝒂𝟏𝑯, 𝒂𝟐𝑯, … } 

  

We define the product of two elements (i.e. cosets) of 𝐺/𝐻 by: 

(𝑥𝐻)(𝑦𝐻) = {(𝑥ℎ1)(𝑦ℎ2)⃒ℎ1, ℎ2 ∈ 𝐻} = 𝑥𝑦𝐻 

  

𝐺/𝐻 is a group with this multiplication and is called a factor group or  

quotient group. 

  

First, let’s show if 𝐻 is a normal subgroup of 𝐺 then 

         (𝑥𝐻)(𝑦𝐻) = {(𝑥ℎ1)(𝑦ℎ2)⃒ℎ1, ℎ2 ∈ 𝐻} is equal to 𝑥𝑦𝐻.  

 

 (𝑥ℎ1)(𝑦ℎ2) = 𝑥(ℎ1𝑦)ℎ2,   because multiplication is associative. 

          Since 𝐻 is normal i.e. 𝑦𝐻 = 𝐻𝑦 for all 𝑦 ∈ 𝐺, there is an ℎ3 ∈ 𝐻     

          such that ℎ1𝑦 = 𝑦ℎ3.  

 

So (𝑥ℎ1)(𝑦ℎ2) = 𝑥(ℎ1𝑦)ℎ2 

                                       = 𝑥(𝑦ℎ3)ℎ2 

                                       = 𝑥𝑦(ℎ3ℎ2) ∈ 𝑥𝑦𝐻.  
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Let’s show 𝐺/𝐻 is a group. 

0) We just saw that it’s closed under multiplication. 

1) The multiplication is associative because the group multiplication in 𝐺 is 

associative. 

(𝑎𝐻)(𝑏𝐻𝑐𝐻) = (𝑎𝐻)(𝑏𝑐𝐻) = (𝑎𝑏𝑐)𝐻 

(𝑎𝐻𝑏𝐻)(𝑐𝐻) = (𝑎𝑏𝐻)(𝑐𝐻) = (𝑎𝑏𝑐)𝐻. 

2) The identity element is the coset 𝑒𝐻 = 𝐻. 

3) Given 𝑎𝐻, 𝑎−1𝐻 is the inverse element (coset) in 𝐺/𝐻 since 

(𝑎𝐻)(𝑎−1𝐻) = (𝑎𝑎−1)𝐻 = 𝑒𝐻 = 𝐻. 

 

Ex.  Let 𝐺 = ℤ and 𝐻 = 4ℤ = {… , −8, −4, 0, 4, 8 … }.  Identify the  

       elements of 𝐺/𝐻 = ℤ/4ℤ .  

 

 Since 𝐺 is abelian, 𝐻 is a normal subgroup of 𝐺. 

 The factor group ℤ/4ℤ is the set of cosets of 𝐻 = 4ℤ in 𝐺 = ℤ. 

 That is, the elements of 𝐺/𝐻 are: 

0 + 4ℤ = {… , −8, −4, 0, 4, 8 … } 

1 + 4ℤ = {… , −7, −3, 1, 5, 9 … } 

2 + 4ℤ = {… , −6, −2, 2, 6, 10 … } 

3 + 4ℤ = {… , −5, −1, 3, 7, 11 … }. 

 If we want to “multiply” two elements, say 2 + 4ℤ and 3 + 4ℤ, 
 we do it by:  

         (2 + 4ℤ)(3 + 4ℤ) = (2 + 3) + 4ℤ = 5 + 4ℤ = 1 + 4ℤ. 
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 Ex.   What is the identity element of ℤ/4ℤ? What is the inverse element of   

         3 + 4ℤ?  

 

 Any element of ℤ/4ℤ looks like the set 𝑚 + 4ℤ,  

where 𝑚 = 0, 1, 2, or 3. 

The identity element of ℤ/4ℤ is just 4ℤ since: 

       (4ℤ)(𝑚 + 4ℤ) = (0 + 𝑚) + 4ℤ = 𝑚 + 4ℤ.  

 

To find the inverse of 3 + 4ℤ  we want the coset 𝑚 + 4ℤ such that: 

(𝑚 + 4ℤ)(3 + 4ℤ) = 4ℤ 

  (3 + 𝑚) + 4ℤ = 4ℤ. 

So we need 3 + 𝑚 = 0 𝑚𝑜𝑑 4 or 𝑚 = 1, 

so 1 + 4ℤ is the inverse element of 3 + 4ℤ. 

 

Notice ℤ/4ℤ looks a lot like ℤ4.  

In fact there’s a simple isomorphism from ℤ/4ℤ onto ℤ4. 

                     𝜙: ℤ/4ℤ → ℤ4  by 𝜙(𝑚 + 4ℤ) = 𝑚. 

 

By similar reasoning ℤ/𝑛ℤ is isomorphic to ℤ𝑛, for any 𝑛 ∈ ℤ+.  
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Ex.   Let 𝐺 = ℝ be a (abelian) group under addition and let 𝑐 ∈ ℝ+. 

       The cyclic subgroup 𝐻 =< 𝑐 > of ℝ contains: 

{… − 3𝑐, −2𝑐, −𝑐, 0, 𝑐, 2𝑐, 3𝑐, … }. 

        Describe the elements of 𝐺/𝐻.   

 

        Every coset of 𝐻, 𝑚𝐻 where 𝑚 ∈ ℝ is: 

{… − 3𝑐 + 𝑚, −2𝑐 + 𝑚, −𝑐 + 𝑚, 𝑚, 𝑚 + 𝑐, 𝑚 + 2𝑐, 𝑚 + 3𝑐, … } 

 Notice that if 𝑚1 and 𝑚2 differ by an integer multiple of 𝑐 you get the 

 same coset. 

 

For example if 𝑐 = 𝜋,    𝑚1 =
1

2
,    𝑚2 =

1

2
+ 2𝜋: 

     𝐻 = {… − 3𝜋, −2𝜋, −𝜋, 0, 𝜋, 2𝜋, 3𝜋, … } 

𝑚1𝐻 = {… , −3 𝜋 +
1

2
, −2𝜋 +

1

2
, −𝜋 +

1

2
,

1

2
, 𝜋 +

1

2
, 2𝜋 +

1

2
, … } 

𝑚2𝐻 = {… , −3 𝜋 + (
1

2
+ 2𝜋) , −2𝜋 + (

1

2
+ 2𝜋), −𝜋 + (

1

2
+ 2𝜋) , (

1

2
+ 2𝜋) , … }                                                                     

          = {… , −𝜋 +
1

2
,   

1

2
,   𝜋 +

1

2
,   2𝜋 +

1

2
, … } = 𝑚1𝐻.   

 

So the group 𝐺/𝐻 = ℝ/< 𝑐 > is the set of cosets of the form 𝑚 + 𝑐ℤ,  

where 0 ≤ 𝑚 < 𝑐 . This group is isomorphic to: 

ℝ𝑐 = {real numbers modulo c}. That is, two real numbers are the same if 

their difference is an integer multiple of 𝑐 (analogous to ℤ𝑛). So 0.5 and      

0.5 + 3𝜋 are the same in ℝ𝜋. 

The isomorphism is: 

𝜙: ℝ/ < 𝑐 >→ ℝ𝑐       by 𝜙(𝑚 + 𝑐ℤ) = 𝑚;   0 ≤ 𝑚 < 𝑐. 
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Ex.  Find the order of the factor group (ℤ2 × ℤ4)/ < (1, 1) >.   

 

     The order of 𝐺/𝐻 is the number of cosets of 𝐻 in 𝐺. If 𝐺 is a finite group  

           we saw that this number was 
|𝐺|

|𝐻|
.  

     In this case 𝐺 = ℤ2 × ℤ4 so |𝐺| = (2)(4) = 8.   

 

     The order of < (1, 1) > is the order of (1, 1) in ℤ2 × ℤ4. 

     1 is order 2 in ℤ2, and 1 is order 4 in ℤ4. The 𝐿𝐶𝑀(2, 4) = 4, so    

     < (1, 1) > is order 4. Thus |(ℤ2 × ℤ4)/ < (1, 1) >| =
8

4
= 2. 

 

 

Ex.  Find the order of (1, 7)+< (1, 3) > in the factor group 

      (ℤ4 × ℤ12)/ < (1, 3) >. 

 

          𝐻 =< (1, 3) >= {(1, 3), (2, 6), (3, 9), (0, 0)} 

 So what we want to know is the smallest 𝑘 so that 

        ((1, 7)+< (1,3) >)𝑘 =< (1,3) >.  That is the same as finding the  

              smallest 𝑘 so that (1,7)𝑘  is any of the elements of 

                             < 1, 3 >= {(1, 3), (2, 6), (3, 9), (0, 0)}. 

 (1, 7)2 = (1, 7) + (1, 7) = (2, 2)   (since 7 + 7 = 2  𝑚𝑜𝑑 12) 

          (1, 7)3 = (1, 7) + (1, 7) + (1, 7) = (3,9) ∈ < (1, 3) > 

 So (1, 7)+< (1, 3) > has order 3 in  (ℤ4 × ℤ12)/ < (1, 3) >. 
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Theorem:  Let 𝐻 be a normal subgroup of 𝐺.  

       Then 𝜙: 𝐺 → 𝐺/𝐻 by 𝜙(𝑥) = 𝑥𝐻 is a homomorphism with 𝐻   

        as kernel. 

 

Proof:  

    Let 𝑥, 𝑦 ∈ 𝐺, then 𝜙(𝑥𝑦) = 𝑥𝑦𝐻 = (𝑥𝐻)(𝑦𝐻)    (Since 𝐻 is normal) 

                                                                          = 𝜙(𝑥)𝜙(𝑦). 

  

𝐻 is the identity element in 𝐺/𝐻.  

𝜙(𝑥) = 𝑥𝐻 = 𝐻 if, and only if, 𝑥 ∈ 𝐻. 

So 𝐻 is the kernel of 𝜙. 

 

The Fundamental Homomorphism Theorem:  Let 𝜙: 𝐺 → 𝐺′ be a group 

 homomorphism with kernel 𝐻. Then 𝜙[𝐺] is a group, and 

 𝜏: 𝐺/𝐻 → 𝜙[𝐺] given by 𝜏(𝑔𝐻) = 𝜙(𝑔) is an ismorphism.   

 If  𝜋: 𝐺 → 𝐺/𝐻 is the homomorphism given by 𝜋(𝑔) = 𝑔𝐻,         

 then 𝜙(𝑔) = 𝜏𝜋(𝑔) for each 𝑔 ∈ 𝐺. 

    

   𝜙 

 𝐺                           𝜙[𝐺] 

     𝜋      

𝐺/𝐻 

 

 

𝜏 
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Another way to think about this theorem is that if we can find 

𝜙: 𝐺 → 𝐺′,  a homomorphism onto 𝐺′, and 𝐻 = ker(𝜙),  

then 𝐺′ is isomorphic to 𝐺/𝐻 (written 𝐺′ ≅ 𝐺/𝐻). 

 

Ex.    Classify the group  (ℤ8 × ℤ4)/ ({0} × ℤ4)  

 

 𝜋: ℤ8 × ℤ4 → ℤ8 given by 𝜋(𝑥, 𝑦) = 𝑥 is a homomorphism of  

 ℤ8 × ℤ4 onto  ℤ8 with kernel {0} × ℤ4.  

         By the fundamental homomorphism theorem we conclude that  

         (ℤ8 × ℤ4)/ ({0} × ℤ4)  is isomorphic to ℤ8. 

 

 

Ex.    Show 𝑆𝑛/ 𝐴𝑛 is isomorphic to ℤ2.  

 

 𝜙: 𝑆𝑛 → ℤ2, by 𝜙(𝜎) = 0 if 𝜎 is even (i.e. in 𝐴𝑛) 

                                      = 1 if 𝜎 is odd 

is a homomorphism of 𝑆𝑛 onto ℤ2. 

 The kernel of 𝜙 is 𝐴𝑛 so 𝑆𝑛/ 𝐴𝑛 ≅ ℤ2 by the fundamental 

 homomorphism theorem. 
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Theorem (Equivalent characterizations of Normal Subgroups):  The following 3 

conditions are equivalent. 

1) 𝑔ℎ𝑔−1 ∈ 𝐻 for all 𝑔 ∈ 𝐺 and ℎ ∈ 𝐻. 

2) 𝑔𝐻𝑔−1 = 𝐻 for all 𝑔 ∈ 𝐺. 

3) 𝑔𝐻 = 𝐻𝑔 for all 𝑔 ∈ 𝐺. 

 

Proof: 1 ⇒ 2. Assume 𝑔ℎ𝑔−1 ∈ 𝐻 for all 𝑔 ∈ 𝐺 and ℎ ∈ 𝐻. 

Thus 𝑔𝐻𝑔−1 = {𝑔ℎ𝑔−1| ℎ ∈ 𝐻} ⊆ 𝐻  for all 𝑔 ∈ 𝐺.  

 

Now let’s show 𝑔𝐻𝑔−1 ⊇ 𝐻 for all 𝑔 ∈ 𝐺. 

Let ℎ ∈ 𝐻. Replacing 𝑔 by 𝑔−1 in 𝑔ℎ𝑔−1 ∈ 𝐻 

we get: 𝑔−1ℎ(𝑔−1)−1 = 𝑔−1ℎ𝑔 = ℎ1 ∈ 𝐻. 

Thus, ℎ = 𝑔ℎ1𝑔−1 ∈ 𝑔𝐻𝑔−1 so 𝑔𝐻𝑔−1 ⊇ 𝐻. 

 

Thus, 𝑔𝐻𝑔−1 = 𝐻.  
 

 

2 ⇒ 3 𝑔𝐻𝑔−1 = 𝐻 ⇒ 𝑔𝐻 = 𝐻𝑔 for all 𝑔 ∈ 𝐺.  
 

 

3 ⇒ 1 Suppose 𝑔𝐻 = 𝐻𝑔 for all 𝑔 ∈ 𝐺. Then, 𝑔ℎ = ℎ1𝑔, so 

𝑔ℎ𝑔−1 = ℎ1 ∈ 𝐻 for all 𝑔 ∈ 𝐺 and all ℎ ∈ 𝐻. 

 

Def.  An isomorphism 𝜙: 𝐺 → 𝐺 of a group with itself is an automorphism. The   

      automorphism 𝑖𝑔: 𝐺 → 𝐺 by  𝑖𝑔(𝑥) = 𝑔𝑥𝑔−1 for all 𝑥 ∈ 𝐺 is the inner  

              automorphism of 𝐺 by 𝑔. Performing  𝑖𝑔 on  𝑥 is called conjugation of  𝑥 by 𝑔.  

 

   Thus, 𝐻 is a normal subgroup of 𝐺 if 𝐻 is invariant under all inner  

       automorphisms of 𝐺. 


