Def. Let H be a normal subgroup of a group G (i.e. gH = Hg, for any $g \in G$). We define G/H (called " $G \mod H$ ") to be the set of distinct cosets of H in G.

$$G/H = \{a_1H, a_2H, ...\}$$

We define the product of two elements (i.e. cosets) of G/H by:

$$(xH)(yH) = \left\{ (xh_1)(yh_2) \mid h_1, h_2 \in H \right\} = xyH$$

G/H is a group with this multiplication and is called a **factor group** or **quotient group**.

First, let's show if H is a normal subgroup of G then

$$(xH)(yH) = \left\{ (xh_1)(yh_2) \mid h_1, h_2 \in H \right\} \text{ is equal to } xyH.$$

 $(xh_1)(yh_2) = x(h_1y)h_2$, because multiplication is associative. Since H is normal i.e. yH = Hy for all $y \in G$, there is an $h_3 \in H$ such that $h_1y = yh_3$.

So
$$(xh_1)(yh_2) = x(h_1y)h_2$$

= $x(yh_3)h_2$
= $xy(h_3h_2) \in xyH$.

Let's show G/H is a group.

- 0) We just saw that it's closed under multiplication.
- 1) The multiplication is associative because the group multiplication in G is associative.

$$(aH)(bHcH) = (aH)(bcH) = (abc)H$$
$$(aHbH)(cH) = (abH)(cH) = (abc)H.$$

- 2) The identity element is the coset eH = H.
- 3) Given aH, $a^{-1}H$ is the inverse element (coset) in G/H since $(aH)(a^{-1}H) = (aa^{-1})H = eH = H$.
- Ex. Let $G = \mathbb{Z}$ and $H = 4\mathbb{Z} = \{\dots, -8, -4, 0, 4, 8 \dots\}$. Identify the elements of $G/H = \mathbb{Z}/4\mathbb{Z}$.

Since G is abelian, H is a normal subgroup of G.

The factor group $\mathbb{Z}/4\mathbb{Z}$ is the set of cosets of $H = 4\mathbb{Z}$ in $G = \mathbb{Z}$.

That is, the elements of G/H are:

- $0 + 4\mathbb{Z} = \{\dots, -8, -4, 0, 4, 8 \dots\}$
- $1 + 4\mathbb{Z} = \{\dots, -7, -3, 1, 5, 9 \dots\}$
- $2 + 4\mathbb{Z} = \{\dots, -6, -2, 2, 6, 10 \dots\}$
- $3 + 4\mathbb{Z} = \{\dots, -5, -1, 3, 7, 11 \dots\}.$

If we want to "multiply" two elements, say $2 + 4\mathbb{Z}$ and $3 + 4\mathbb{Z}$, we do it by:

$$(2 + 4\mathbb{Z})(3 + 4\mathbb{Z}) = (2 + 3) + 4\mathbb{Z} = 5 + 4\mathbb{Z} = 1 + 4\mathbb{Z}.$$

Ex. What is the identity element of $\mathbb{Z}/4\mathbb{Z}$? What is the inverse element of $3 + 4\mathbb{Z}$?

Any element of $\mathbb{Z}/4\mathbb{Z}$ looks like the set $m + 4\mathbb{Z}$,

where m = 0, 1, 2, or 3.

The identity element of $\mathbb{Z}/4\mathbb{Z}$ is just $4\mathbb{Z}$ since:

$$(4\mathbb{Z})(m+4\mathbb{Z}) = (0+m) + 4\mathbb{Z} = m + 4\mathbb{Z}.$$

To find the inverse of $3 + 4\mathbb{Z}$ we want the coset $m + 4\mathbb{Z}$ such that:

$$(m + 4\mathbb{Z})(3 + 4\mathbb{Z}) = 4\mathbb{Z}$$
$$(3 + m) + 4\mathbb{Z} = 4\mathbb{Z}.$$

So we need $3 + m = 0 \mod 4$ or m = 1,

so $1 + 4\mathbb{Z}$ is the inverse element of $3 + 4\mathbb{Z}$.

Notice $\mathbb{Z}/4\mathbb{Z}$ looks a lot like \mathbb{Z}_4 .

In fact there's a simple isomorphism from $\mathbb{Z}/4\mathbb{Z}$ onto \mathbb{Z}_4 .

$$\phi: \mathbb{Z}/4\mathbb{Z} \to \mathbb{Z}_4$$
 by $\phi(m+4\mathbb{Z}) = m$.

By similar reasoning $\mathbb{Z}/n\mathbb{Z}$ is isomorphic to \mathbb{Z}_n , for any $n \in \mathbb{Z}^+$.

Ex. Let $G = \mathbb{R}$ be a (abelian) group under addition and let $c \in \mathbb{R}^+$.

The cyclic subgroup H = < c > of \mathbb{R} contains:

$$\{\dots - 3c, -2c, -c, 0, c, 2c, 3c, \dots\}.$$

Describe the elements of G/H.

Every coset of H, mH where $m \in \mathbb{R}$ is:

{... -3c + m, -2c + m, -c + m, m, m + c, m + 2c, m + 3c, ...} Notice that if m_1 and m_2 differ by an integer multiple of c you get the same coset.

For example if $c = \pi$, $m_1 = \frac{1}{2}$, $m_2 = \frac{1}{2} + 2\pi$: $H = \{\dots - 3\pi, -2\pi, -\pi, 0, \pi, 2\pi, 3\pi, \dots\}$ $m_1 H = \{\dots, -3\pi + \frac{1}{2}, -2\pi + \frac{1}{2}, -\pi + \frac{1}{2}, \frac{1}{2}, \pi + \frac{1}{2}, 2\pi + \frac{1}{2}, \dots\}$ $m_2 H = \{\dots, -3\pi + (\frac{1}{2} + 2\pi), -2\pi + (\frac{1}{2} + 2\pi), -\pi + (\frac{1}{2} + 2\pi), (\frac{1}{2} + 2\pi), (\frac{1}{2} + 2\pi), \dots\}$ $= \{\dots, -\pi + \frac{1}{2}, \frac{1}{2}, \pi + \frac{1}{2}, 2\pi + \frac{1}{2}, \dots\} = m_1 H.$

So the group $G/H = \mathbb{R}/\langle c \rangle$ is the set of cosets of the form $m + c\mathbb{Z}$, where $0 \le m < c$. This group is isomorphic to:

 $\mathbb{R}_c = \{\text{real numbers modulo } c\}$. That is, two real numbers are the same if their difference is an integer multiple of c (analogous to \mathbb{Z}_n). So 0.5 and $0.5 + 3\pi$ are the same in \mathbb{R}_{π} .

The isomorphism is:

 $\phi: \mathbb{R}/\langle c \rangle \rightarrow \mathbb{R}_c$ by $\phi(m + c\mathbb{Z}) = m; \ 0 \leq m < c.$

Ex. Find the order of the factor group $(\mathbb{Z}_2 \times \mathbb{Z}_4)/ < (1,1) >$.

The order of G/H is the number of cosets of H in G. If G is a finite group we saw that this number was $\frac{|G|}{|H|}$. In this case $G = \mathbb{Z}_2 \times \mathbb{Z}_4$ so |G| = (2)(4) = 8.

The order of <(1,1) > is the order of (1,1) in $\mathbb{Z}_2 \times \mathbb{Z}_4$. 1 is order 2 in \mathbb{Z}_2 , and 1 is order 4 in \mathbb{Z}_4 . The LCM(2,4) = 4, so <(1,1) > is order 4. Thus $|(\mathbb{Z}_2 \times \mathbb{Z}_4)/<(1,1) >| = \frac{8}{4} = 2$.

Ex. Find the order of (1, 7) + < (1, 3) > in the factor group $(\mathbb{Z}_4 \times \mathbb{Z}_{12}) / < (1, 3) >$.

$$H = <(1,3) > = \{(1,3), (2,6), (3,9), (0,0)\}$$

So what we want to know is the smallest k so that

 $((1,7)+<(1,3)>)^k =<(1,3)>$. That is the same as finding the smallest k so that $(1,7)^k$ is any of the elements of

< 1, 3 >= {(1, 3), (2, 6), (3, 9), (0, 0)}.
(1, 7)² = (1, 7) + (1, 7) = (2, 2) (since 7 + 7 = 2 mod 12)
(1, 7)³ = (1, 7) + (1, 7) + (1, 7) = (3, 9)
$$\in$$
 < (1, 3) >
So (1, 7)+< (1, 3) > has order 3 in ($\mathbb{Z}_4 \times \mathbb{Z}_{12}$)/< (1, 3) >.

Theorem: Let H be a normal subgroup of G.

Then $\phi: G \to G/H$ by $\phi(x) = xH$ is a homomorphism with H as kernel.

Proof:

Let
$$x, y \in G$$
, then $\phi(xy) = xyH = (xH)(yH)$ (Since *H* is normal)
= $\phi(x)\phi(y)$.

H is the identity element in G/H.

 $\phi(x) = xH = H$ if, and only if, $x \in H$.

So H is the kernel of ϕ .

The Fundamental Homomorphism Theorem: Let $\phi: G \to G'$ be a group homomorphism with kernel H. Then $\phi[G]$ is a group, and $\tau: G/H \to \phi[G]$ given by $\tau(gH) = \phi(g)$ is an ismorphism. If $\pi: G \to G/H$ is the homomorphism given by $\pi(g) = gH$, then $\phi(g) = \tau \pi(g)$ for each $g \in G$.

Another way to think about this theorem is that if we can find $\phi: G \to G'$, a homomorphism onto G', and $H = \ker(\phi)$, then G' is isomorphic to G/H (written $G' \cong G/H$).

Ex. Classify the group $(\mathbb{Z}_8 \times \mathbb{Z}_4)/(\{0\} \times \mathbb{Z}_4)$

 $\pi: \mathbb{Z}_8 \times \mathbb{Z}_4 \to \mathbb{Z}_8$ given by $\pi(x, y) = x$ is a homomorphism of $\mathbb{Z}_8 \times \mathbb{Z}_4$ onto \mathbb{Z}_8 with kernel $\{0\} \times \mathbb{Z}_4$. By the fundamental homomorphism theorem we conclude that $(\mathbb{Z}_8 \times \mathbb{Z}_4)/(\{0\} \times \mathbb{Z}_4)$ is isomorphic to \mathbb{Z}_8 .

Ex. Show S_n / A_n is isomorphic to \mathbb{Z}_2 .

$$\phi:S_n o \mathbb{Z}_2$$
, by $\phi(\sigma)=0$ if σ is even (i.e. in $A_n)$
= 1 if σ is odd

is a homomorphism of S_n onto \mathbb{Z}_2 .

The kernel of ϕ is A_n so $S_n / A_n \cong \mathbb{Z}_2$ by the fundamental homomorphism theorem.

Theorem (Equivalent characterizations of Normal Subgroups): The following 3 conditions are equivalent.

- 1) $ghg^{-1} \in H$ for all $g \in G$ and $h \in H$.
- 2) $gHg^{-1} = H$ for all $g \in G$.
- 3) gH = Hg for all $g \in G$.

Proof: $1 \Rightarrow 2$. Assume $ghg^{-1} \in H$ for all $g \in G$ and $h \in H$. Thus $gHg^{-1} = \{ghg^{-1} | h \in H\} \subseteq H$ for all $g \in G$.

Now let's show
$$gHg^{-1} \supseteq H$$
 for all $g \in G$.
Let $h \in H$. Replacing g by g^{-1} in $ghg^{-1} \in H$
we get: $g^{-1}h(g^{-1})^{-1} = g^{-1}hg = h_1 \in H$.
Thus, $h = gh_1g^{-1} \in gHg^{-1}$ so $gHg^{-1} \supseteq H$.

Thus, $gHg^{-1} = H$.

- $2 \Rightarrow 3$ $gHg^{-1} = H \Rightarrow gH = Hg$ for all $g \in G$.
- $3 \Rightarrow 1$ Suppose gH = Hg for all $g \in G$. Then, $gh = h_1g$, so $ghg^{-1} = h_1 \in H$ for all $g \in G$ and all $h \in H$.
- Def. An isomorphism $\phi: G \to G$ of a group with itself is an **automorphism**. The automorphism $i_g: G \to G$ by $i_g(x) = gxg^{-1}$ for all $x \in G$ is the **inner automorphism** of G by g. Performing i_g on x is called **conjugation** of x by g.

Thus, H is a normal subgroup of G if H is invariant under all inner automorphisms of G.